Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions?

Similar documents
Math 2930 Worksheet Introduction to Differential Equations

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches

Logistic Model with Harvesting

Math 2930 Worksheet Equilibria and Stability

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation.

Calculus IV - HW 2 MA 214. Due 6/29

CALCULUS BC., where P is the number of bears at time t in years. dt (a) Given P (i) Find lim Pt.

Math Assignment 2

Math 232, Final Test, 20 March 2007

Exam Two. Phu Vu. test Two. Take home group test April 13 ~ April 18. Your group alias: Your group members: Student name

1.2. Introduction to Modeling

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

Introduction to Dynamical Systems

MATH 215/255 Solutions to Additional Practice Problems April dy dt

Predator - Prey Model Trajectories and the nonlinear conservation law

Math 2930 Worksheet Final Exam Review

Lesson 9: Predator-Prey and ode45

3.3 Limits and Infinity

8th Grade Common Core Math

Modeling with differential equations

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

Solutions to the Review Questions

Unit #16 : Differential Equations

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Autonomous Equations and Stability Sections

EXERCISES FOR SECTION 1.1

2015 Math Camp Calculus Exam Solution

Differential Equations Handout A

Math 116 Second Midterm November 14, 2012

Solutions to the Review Questions

Functions of Two Variables

Module 2: Reflecting on One s Problems

Final Exam Review Part I: Unit IV Material

Momentum Balances & Quadratic Equations

Euler s Method (BC Only)

Math 216 First Midterm 19 October, 2017

Sample Questions, Exam 1 Math 244 Spring 2007

Solving Differential Equations: First Steps

Introduction to Determining Power Law Relationships

Nonlinear dynamics & chaos BECS

Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15.

Modeling Prey and Predator Populations

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

Slope Fields: Graphing Solutions Without the Solutions

2 Discrete Dynamical Systems (DDS)

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

Homework 2 Solutions Math 307 Summer 17

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

Solving Quadratic Equations

UCI MATH CIRCLE: POPULATION DYNAMICS

Characteristics of Linear Functions (pp. 1 of 8)

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds

MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2)

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

18.03SC Practice Problems 2

y x 3. Solve each of the given initial value problems. (a) y 0? xy = x, y(0) = We multiply the equation by e?x, and obtain Integrating both sides with

#29: Logarithm review May 16, 2009

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5

Infinity Unit 2: Chaos! Dynamical Systems

Final exam practice 1 UCLA: Math 3B, Winter 2019

Universidad Carlos III de Madrid

Problem set 7 Math 207A, Fall 2011 Solutions

The Logistic Equation

Continuum Limit and Fourier Series

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

Homework #4 Solutions

dy dt = 1 y t 1 +t 2 y dy = 1 +t 2 dt 1 2 y2 = 1 2 ln(1 +t2 ) +C, y = ln(1 +t 2 ) + 9.

Derivation of Euler's Method - Numerical Methods for Solving Differential Equations

Math 216 First Midterm 8 October, 2012

Solutions to Math 41 Second Exam November 5, 2013

Coulomb s Law. 1 Equipment. 2 Introduction

Introduction to Vectors

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA:

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1),

Math Fundamentals for Statistics I (Math 52) Unit 7: Connections (Graphs, Equations and Inequalities)

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

Math 1500 Fall 2010 Final Exam Review Solutions

Notes: Piecewise Functions

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

Math 142-2, Homework 2

Math 115 Spring 11 Written Homework 10 Solutions

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Basic Equations and Inequalities

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM

Student Exploration: Food Chain

Solutions to Math 41 First Exam October 18, 2012

Graphical Relationships Among f, f,

Interacting Populations.

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES

Preface. The version of the textbook that has been modified specifically for Math 1100 at MU is available at:

1 The pendulum equation

M340 HW 2 SOLUTIONS. 1. For the equation y = f(y), where f(y) is given in the following plot:

Park School Mathematics Curriculum Book 1, Lesson 1: Defining New Symbols

5.5 Partial Fractions & Logistic Growth

Transcription:

Math 2930 Worksheet Introduction to Differential Equations Week 1 January 25, 2019 What is a Differential Equation and what are Solutions? A differential equation is an equation that relates an unknown function to its derivative(s). Suppose y = y(t) is some unknown function, then a differential equation would express the rate of change,, in terms of y and/or t. For example, all of the following are differential equations. dp = kp, = y + 2t, dx = x2 + 5, dx = 6x 2 tx, = y2 1 t 2 + 2t In particular, these are all examples of first-order differential equations because only the first derivative appears in the equation. Given a differential equation for some unknown function, solutions to this differential equation are functions that satisfy the equation. Question 1. Is the function y = 1 + t a solution to the differential equation How about the function y = 1 + 2t? How about y = 1? Be able to explain your reasoning. = y2 1 t 2 +2t? Why or why not? Some material in this worksheet was adapted from https://iode.wordpress.ncsu.edu/ which is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Question 2. Differential equations are often used to model population growth, say of the number of fish in Lake Cayuga as a function of time. Let s simplify the situation by making the following assumptions: There is only one species of fish. The species has been in Lake Cayuga for some time prior to what we call t = 0. The species has access to unlimited resources (e.g. food, space, water). The species reproduces continuously. Given these assumptions, sketch three possible graphs of population versus time: one starting at P = 10, one starting at P = 20, and the third starting at P = 30. (a) For your graph starting with P = 10, how does the slope vary as time increases? Explain. (b) For a set P value, say P = 30, how do the slopes vary across the three graphs you drew? 2

Question 3. The situation in Question 2 can be modeled with a differential equation of the form dp = something. Here are some possible equations someone might use to try and model this situation. For each one, come up with reasons for why they do or don t accurately model the problem. = (t + 1)2 = 2P = 5et = 3t = P 2 + 1 3

Question 4. Below are two systems of differential equations. In both of these systems, x and y refer to the population of two different species at time t. Which system describes a situation where the two species compete? Which system describes cooperative species? Explain your reasoning. (i) dx = 5x + 2xy, (ii) dx = x 2xy = 4y + 3xy, = 2y xy Question 5. Consider the differential equation = 0.5y(2 + y)(y 8) which has been created to provide predictions about the future population of rabbits over time. For what values of y is y(t) increasing? Explain your reasoning. For what values of y is y(t) decreasing? Explain your reasoning. For what values of y is solution function y(t)? neither positive nor negative? What does this imply about the 4

Question 6. The differential equation (1 = r y ) y K where r and K are positive constants, is an example of what is known as a logistic equation. These are usually used to model the population y of some species in an environment with limited resources as a function of time t. (a) If we start with some initial population y(0) > 0, what can you say about the qualitative behavior of y(t) will be as t increases? (By qualitative I mean that you should try to explain using words instead of numbers or equations where possible, but still try to be specific.) Hint: Does y approach a limit as t? If so, what is this limiting value? How does this depend on r and K, if at all? (b) Now suppose we introduce some sort of predation by a fixed number of predators. Then we could model this system with: (1 = r y ) y Ey K where E is another positive constant. What can you say about the qualitative behavior of y(t) this time? As t, does the population still approach a non-zero value or is it driven to extinction (i.e. y 0)? How does this depend on E, if at all? 5

Answer to Question 1. To check whether these are solutions, we plug the given functions y(t) into both sides of the differential equation and check that they are equal. For y = 1 + t, we get = d [ 1 + t ] = 1 and y 2 1 t 2 + 2t = (1 + t)2 1 t 2 = t2 + 2t + 2t t 2 + 2t = 1 since these two quantities are equal, y(t) = 1 + t is a solution of the differential equation. For y = 1 + 2t, we get = 2, but y2 1 t 2 +2t = 4t2 +4t 2, so this is not a solution. t 2 +2t For y = 1, we get = 0 and y2 1 = 0, so this is another solution. t 2 +2t Answer to Question 2. Your graphs could look something like this: (a) For the graph starting with P = 10 (shown in red), the slope increases as time increases. This makes sense, since more fish implies more reproduction, which implies a larger growth rate. Visually, this means that your graph should be concave up. (b) For a set P value, the slope stays the same across the three graphs. This is because the slope of the graph is the rate of change dp. Since the growth rate of the population depends only on the number of fish, not the time of day, it should be the same on all three graphs. Visually this means that the slope of the graphs should be the same at all the 3 points where the horizontal dashed line intersects the graphs. Answer to Question 3. The rate of change dp should be a function of only the size of the population P, and not on the time t. For similar reasons to (2b), the rate of change is determined by the number of fish there are right now, not what time of day it is. This rules out all but the 2nd and 5th options. Note: When they first see this problem, many students are tempted to put dp = something involving t, because the rate is increasing in time. But since P is itself a function of t, this means dp depends implicitly on the value of t, so dp can still be increasing in time even without depending explicitly on it. We can also rule out the 5th option using a sanity check of plugging in P = 0. Since P = 0 is the case where there are no fish, any reasonable model would also necessarily have dp = 0, otherwise fish are being created out of nowhere. Since the fifth model would instead say dp = 1 > 0, this model does not make sense. 6

dp should really depend linearly on P since increasing the number of fish by a constant factor would result in increasing reproduction by that exact same constant factor. I.e. if you have three as many fish parents you should have three times as many fish babies. This leaves dp = 2P as the only good model. Answer to Question 4. Here the terms that correspond to the interaction of the two species are those with both x and y. Whether the interactions are cooperative or competitive depends on the sign of the xy term. Since (i) has positive coefficients in front of the xy terms, that means increasing the populations of both x and y have a positive effect on the rate at which both populations grow. This would correspond to the case of two cooperative species. Similarly, since (ii) has negative coefficients in front of the xy terms, it means that increasing the numbers of x or y would have a negative effect on the rate of change of both species. This would correspond to the case of two competitive species. Answer to Question 5. To find where y(t) is increasing or decreasing, we will need to find where is positive or negative. We can easily see this by looking at a graph of versus y. (Note that this is not the same as a graph of y versus t!) If we are doing this by hand and don t have access to any sort of graphing tool, we can figure out the sign of by considering the signs of each of the three terms: (0.5y), (2 + y), and (y 8). (a) y(t) is increasing where is positive. This happens when 2 < y < 0 and y > 8. In set notation this would be ( 2, 0) (8, ). (a) y(t) is decreasing where is negative. This happens when y < 2 and 0 < y < 8. In set notation this would be (, 2) (0, 8). (c) If is neither positive or negative, then it must be zero. This occurs at three points: 0.5y(2 + y)(y 8) = 0 y = 0, 2, 8 7

These three values of y are called equilibria, since the constant functions y = 0, y = 2, and y = 8 are solutions of the differential equation. In other words, if your initial condition is any of these three values, then your solution will remain constant at that value for all t. Answer to Question 6. (a) In looking for the qualitative behavior of solutions, it s often best to look at the sign of and how it changes. Here, we see that both the r and y terms are positive, so the sign of is determined by the sign of 1 y K. This means that is y > K, then < 0, or in other words that any solution above the line y = K will be decreasing. If y = K, then = 0, which means that the constant function y(t) = K is in fact a solution. This is called an equilibrium solution of the differential equation. If 0 < y < K, then > 0, so any solution below the line y = K will be increasing. Putting this all together, this means that any solution starting below y = K will increase asymptotically up towards the limit y = K as t. Similarly, any solution starting above y = K will decrease asymptotically towards K, while the solution starting at K will remain there. So no matter what the initial population y(0) is, it will approach the limit of K when t. In population growth models, K functions here as the carrying capacity. Note that the constant r doesn t affect the limiting value of y, just the rate at which solutions approach the limit K. If this is confusing, don t worry, we ll go over more problems like this in Section 2.5 (b) This part works similarly to part a. Now, we can rearrange the terms as: ( = r 1 y K E ) y r Now we see that the sign of depends purely upon the sign of 1 y K E r. First, if E r, then 1 E/r < 0, so this term is always negative for any y > 0. This means that will always be negative, and so all solutions y(t) will eventually decrease to the limit of 0 as t, i.e. the population will go extinct. However, if E < r (i.e. if there is less predation), then we calculate that = 0 when 1 y K E r = 0 which we can solve for y as: y = K ( 1 E ) r This quantity is the new carrying capacity: Any population y starting at this equilbrium value will stay there for all times t since = 0 We can further see that if y > K(1 E/r), then < 0, so all solutions starting above this value will decrease asymptotically to this new carrying capacity. Similarly, all solutions starting below y = K(1 E/r), will increase asymptotically up to this new carrying capacity. 8