Andrei Medvedovici, Florina Micăle, Florentin Tache

Similar documents
Application Note. Agilent Application Solution Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection.

Determination of 24 PAHs in Drinking Water

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

Environmental Forensic Principals for Sources Allocation of Polycyclic Aromatic Hydrocarbons

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Sensitive and rapid determination of polycyclic aromatic hydrocarbons in tap water

A Look at Column Choices. Ed Kim Application Engineer Agilent Technologies, Inc February 12, 2009

The direct effect of the harbour. micropollutant concentration. Workshop Characterization of atmospheric pollution in harbour areas 26 June 2013

Appendix 1: Polycyclic Aromatic Compounds: Nomenclature and Analysis

Method 8270C PAH. FD- Field Duplicate Samples

Supporting Information

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS

Selection of a Capillary

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission

Analysis of Polycyclic Aromatic Hydrocarbons in Soil with Agilent Bond Elut HPLC-FLD

Selection of a Capillary GC Column

Occupational exposure to polycyclic aromatic hydrocarbons in various technological processes i INTRODUCTION

Reviewing Material Safety Data Sheets to Verify Significant Drinking Water Threats

TETRA TECH, INC. December 8, Lynn Nakashima Berkeley Regional Office 700 Heinz Avenue, Suite 200C Berkeley, California 94710

*

The Suite for Environmental GC Analysis

ILLA SpA VIA GHISOLFI GUARESCHI, NOCETO (PR)

Rely on Rxi -PAH Columns

APPENDIX G. Data Management Rules. Dioxin Data Report Appendix G. Lower Duwamish Waterway Superfund Site: T-117 Early Action Area

Tar measurement by the Solid Phase Adsorption (SPA) method

Test Report. Report No. ECL01H Page 1 of 5

Katherine K. Stenerson, Michael Ye, Michael Halpenny, Olga Shimelis, and Leonard M. Sidisky. Supelco, Div. of Sigma-Aldrich Bellefonte, PA USA

Determination of Polycyclic Aromatic Hydrocarbons (PAH) Adsorbed on Soot Formed in Pyrolysis of Acetylene at Different Temperatures

MEASUREMENT OF DRY DEPOSITION AMOUNT OF PAHS IN ZONGULDAK REGION

Analysis. Priority LC GC. Zebron PAH Accurately quantitate EU and EPA PAHs in less than 28 minutes

EL608. Deodorants [EL /1/ ]

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products

Test Report No. SH / CHEM Date: Apr. 28, 2008 Page 1 of 6

Test Report No. : CE/2008/38467 Date : 2008/04/07 Page : 2 of 11 Test Result(s) PART NAME NO.1 : BLACK PLASTIC TUBE Cadmium (Cd) Lead (Pb) Mercury (Hg

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

anthracene Figure 1: Structures of Selected Polyaromatic Hydrocarbons (PAHs)

The Design of High Temperature Capillary Gas Chromatography Columns Based on Polydimethylsiloxane

Results of a Sediment Survey in the Near Offshore Waters of the Proposed Quarry Site in the Vicinity of Whites Cove, Digby Neck, Nova Scotia

DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL AT AL-NAHRAWAN BRICKS FACTORY Thamera K. M. Al-Rudaini 1 and Israa M.H.

Choosing the Correct GC Column Dimensions and Stationary Phase

Defense Technical Information Center Compilation Part Notice

ANALYTICAL RESULTS. Project: Mayflower, AR Pipeline Incident

METHOD July J.W. Hodgeson. W.J. Bashe (Technology Applications Inc.) T.V. Baker (Technology Applications Inc.)

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist

ANALYTICAL RESULTS. Project: Mayflower, AR Pipeline Incident

APPENDIX D Laboratory Analytical Reports

Guidance on the Major Source Determination for Certain Hazardous Air Pollutants

Application of an Analytical Technique for Determining Alkyl PAHs, Saturated Hydrocarbons and Geochemical Biomarkers

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

ANALYTICAL RESULTS. Project: Mayflower, AR Pipeline Incident

Facility: Mansfield Revision 3. Title: PAHs by SPME Page 1 of 11

Analysis of polycyclic aromatic hydrocarbons by supercritical fluid chromatography (SFC)

18/05/2010 Soil. 18/05/2010 Soil

Int. J. Renew. Energ & Environ Vol.2, pp 56-64(2016)

MODIFIED METHOD FOR DETERMINATION OF PAHs IN AMBIENT AIR IN BANGKOK USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Removal of PAHs Compounds from Aqueous Solution with Modified Zeolites. M.A.Sc. candidate May 12, 2017 UBC

Test Report No. : CE/2009/34977 Date : 2009/03/25 Page : 1 of 10

HICHROM. Chromatography Columns and Supplies. LC COLUMNS Vydac. Catalogue 9. Hichrom Limited

APPENDIX A TO PART 136 METHODS FOR ORGANIC CHEMICAL ANALYSIS OF MUNICIPAL AND INDUSTRIAL WASTEWATER METHOD 610 POLYNUCLEAR AROMATIC HYDROCARBONS

Analysis of Alkyl PAHs And Geochemical Biomarkers

Method Development in Comprehensive 2D-LC Finding the Most Orthogonal Separation Systems for RPLC RPLC Using Column and Solvent Screening

The Effect of Unresolved Complex Mixtures (UCM) on Isotopic Profile of Aromatic Hydrocarbons

Paths and degradation of PAHs in the Environment

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

Sample Prep Solutions for Environmental Contaminants

Developing Large Volume Injection (LVI) in Split / Splitless Inlets. Philip J. Koerner Phenomenex Inc. NEMC 2014

Forebay Confirmatory Sediment Sampling Results

Analytische Qualitätssicherung Baden-Württemberg

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION

Pursuant to Chapter 4 of the Code of Ethics, ETAD members may not manufacture or sell dyes referred to in Annexes A and B. Annex A

Analyses of PAHs in Urban Stormwater Particulates

Semivolatile Organics Analysis Using an Agilent J&W HP-5ms Ultra Inert Capillary GC Column

Determination of Polycyclic Aromatic Hydrocarbons in Industrial Harbor Sediments by GC-MS

Test Report. Report No.RLSZE Page 1 of 11

Table of Contents. ... Appendix B... 19

Safety Data Sheet. (Silicon Dioxide) DATE PREPARED: 1/6/2016. Section 1. Product and Company Identification

Analysis of DNPH-derivatized Aldehydes and Ketones using the Agilent 1220 Infinity LC System with Diode Array Detector

TECHNICAL MEMORANDUM June 16, 2011

A Single-Method Approach for the Analysis of Volatile and Semivolatile Organic Compounds in Air Using Thermal Desorption Coupled with GC MS

ACETONE. PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg

Certificate of Analysis

The Role of LC and LC/MS in the Environmental Laboratory: An Overview of Recent Technology Trends

APPENDIX K. Fingerprinting Justification Memo

Test Report. ECL01H Page 1 of 9. Report No.

* Author to whom correspondence should be addressed; Tel.: ; Fax:

Estimating PAH Dry Deposition by Measuring Gas and Particle Phase Concentrations in Ambient Air

Hypersil BDS Columns TG 01-05

Volatile organic compounds (VOCs):

ESTIMATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) POLLUTANTS IN THE AMBIENT AIR OF KHARTOUM CITY, SUDAN (Part III)

CALIBRATION OF GC/MS METHOD AND VALIDATION OF THE MODIFIED SAMPLE PREPARATION FOR DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS

Amec Foster Wheeler Environment & Infrastructure, Inc BIG SHANTY ROAD, NW, SUITE 100 KENNESAW, GEORGIA (770)

What Does the EPA Method Round Robin Data Really Tell Us?

Application Note. Abstract. Authors. Environmental

LC and LC/MS Column Selection Flow Chart

Extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) by solid phase micro-extraction/supercritical fluid chromatography (SPME/SFC)

Transcription:

Andrei Medvedovici, Florina Micăle, Florentin Tache Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, # 90-92 Panduri Ave., Bucharest-050663, Romania; Fax no. + 40214102279; E-mail: avmedved@yahoo.com INTERNATINAL WRKSHP Food Chemistry & Engineering May 15 th 2015, Constanta, Romania

" NASA's Spitzer Space Telescope is the first telescope to see polycyclic aromatic hydrocarbons so early -10 billion years further back in time than seen previously. Spitzer detected these molecules in galaxies when our universe was one-fourth of its current age of about 14 billion years. These large molecules, are among the building blocks of life."

Definition - Hydrocarbons with fused aromatic rings. Sources - Biogenic, Petrogenic, Pyrogenic (natural & anthropogenic) Generation - 2 deficient combustion of organic matter. ccurrence - Air, Water, Soil, Dry/Wet deposition on plants. Exposure - Direct contact, breathing, eating, drinking. Impact - Toxic, Carcinogenic, Mutagenic

Selectivity! Selectivity! Solvent(s) pump Selectivity! Cartridge (adsorbent) C 2 (l) Selectivity! Cooler Modifier pump Selectivity! C 2 pump

120 100 Recovery (%) 80 60 40 TGs F luoranthene B enzo[a]pyrene 20 0 0 0.2 0.4 0.6 0.8 1 Density (g/ml)

100 90 Recovery (%) 80 70 60 50 40 30 TGs Fluoranthene Benzo[a]pyrene 20 1.5 ml C6/DCM 1:1 10 0 1 1mL C6/DCM 1:1 2 1.5 ml MeH 3 4 5 6 Benzo[a]pyrene Fluoranthene TGs Sandra P, Medvedovici A, Kot A, David F, in Packed Column Supercritical Fluid Chromatography, (C. Berger; K. Anton Eds.) Marcel Dekker Publishing Inc., pg. 369 401 (1997).

CH 3 Si Si CH 3... N H Ag + Special Adsorbents: Metal Ion Embedded (for - interactions)

Agilent Technologies: Application Note 5989-7968 EN (2008). Si Si Si Si Si Si

Characteristics ACN EL CAS no. 75-05-8 97-64-3 Type of solvent Polar aprotic Polar protic Molecular weight 41.04 118.13 Molecular dipole moment (D) 3.92 2.55 Dielectric constant 35.94 15.7 Hansen solubility parameters Dispersive (δd) 15.3 16 Polar (δp) 18.0 7.6 Hydrogen bonding (δh) 6.1 12.5 Hildebrand solubility parameter (δt) 24.3 21.3 Boiling point ( o C) 81.6 154 Melting point ( o C) -45.0-25.0 Density (g/cm 3 ) 0.781 1.03 Log K o/w -0.34-0.18 Water solubility Miscible Miscible Viscosity/25 o C (cps) 0.36 2.53 Vapor pressure (kpa/20 o C) 9.7 0.22 Flash point ( o C) 2 46.1 Auto ignition temperature ( o C) 524 400 Lower flammable limit (LFL) (%) 4 1.5 Upper flammable limit (UFL) (%) 16 11.4 ral LD50 rat (mg/kg) 2460 2500 Dermal LD50 rabbit (mg/kg) 980 >5000 Acute LC50 Daphnia 48 hrs (mg/ml) 3600 320000 HMIS Health 2 1 HMIS Flammability 3 2 HMIS Physical hazards 0 0 NFPA Rating Health 2 2 NFPA Rating Fire 3 2 NFPA Rating Safety 2 0 Exempt VC (acc. 40 CFR 51.100) No Yes Biodegradability ~ 40%/10 days Readily biodegradable

Backpressure Ratio EL/ACN 12 10 8 6 4 2 y = 0.858e 0.0247x R 2 = 0.9951 0 40 50 60 70 80 90 100 % rganic Solvent

300 290 y = 39.219Ln(x) + 118.76 R 2 = 0.9928 cut-off 280 270 260 250 240 230 220 210 200 0 10 20 30 40 50 60 70 80 90 100 %EL

25.00 ACN/water=70/30 EL/water=50/50 20.00 HETP ( m) m 15.00 10.00 5.00 0.00 0.00 10.00 20.00 30.00 40.00 50.00 u (cm/min)

Zorbax Eclipse XDB C18 (Agilent Technologies, PN 961753-902), 100 mm L 2.1 mm i.d. 3.5 µm d.p. Flow rate of 0.3 mlmin -1 ; Temperature: 25 o C 25.00 20.00 15.00 A B C D E F G H 30.00 25.00 20.00 A B D C E F G H k k 15.00 10.00 10.00 5.00 5.00 0.00 50 55 60 65 70 75 % ACN 0.00 35 40 45 50 55 60 65 % EL naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P

naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P 100.00 90.00 80.00 70.00 60.00 I J K L M N P 120.00 100.00 80.00 I J K M L P N k 50.00 k 60.00 40.00 30.00 40.00 20.00 20.00 10.00 0.00 0.00 50 55 60 65 70 75 35 40 45 50 55 60 65 % ACN % EL

log k log k EL EL B log(% EL) ACN ACN B log(% ACN ) A EL A ACN (% EL) ACN EL B (% ACN) 10 B A ACN B A EL EL 55 50 y = 0.6993x + 3.6269 R 2 = 1 % EL 45 40 35 30 50 55 60 65 70 75 % ACN

naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P mau N or m ali ze d A A B B C D E D C E F F G H I J K L M 0 5 10 15 20 25 30 35 40 45min G H I J K L ACN / Water = 62.5 / 37.5 % M EL / Water = 47.5 / 52.5 % P N N P 0 5 10 15 20 25 30 min

2.5 2 y = -5.3347x + 11.106 R 2 = 0.9971 Log(Total run time) 1.5 1 y = -5.7724x + 11.247 R 2 = 0.9915 EL ACN 0.5 0 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 Log(% rganic modifier)

ACN/water = 70/30 (v/v) EL/water = 45/45 (v/v) Compound H 0 S 0 G 0 (25 B A r C) H 0 S 0 G 0 (25 xy KJmol -1 K -1 Jmol -1 K -1 KJmol -1 K -1 B A r C) xy KJmol -1 K -1 Jmol -1 K -1 KJmol -1 K -1 A 878-2.21 0.9847-7.30-7.6-5.04 1427-2.97 0.9889-11.86-13.9-7.71 B 1043-2.55 0.9923-8.67-10.4-5.56 1495-3.08 0.9913-12.43-14.9-8.00 C 1108-2.43 0.9922-9.21-9.5-6.39 1765-3.43 0.9927-14.67-17.8-9.37 D 1025-2.11 0.9860-8.52-6.7-6.51 1739-3.34 0.9922-14.46-17.0-9.39 E 1138-2.40 0.9876-9.46-9.2-6.73 1780-3.49 0.9924-14.80-18.3-9.34 F 1276-2.74 0.9926-10.61-12.0-7.03 1876-3.67 0.9919-15.60-19.8-9.70 G 1290-2.57 0.9886-10.73-10.6-7.57 1921-3.71 0.9913-15.97-20.1-9.99 H 1422-2.87 0.9922-11.83-13.1-7.92 1925-3.68 0.9913-16.00-19.8-10.09 I 1538-2.96 0.9906-12.79-13.9-8.65 2283-4.44 0.9897-18.98-26.2-11.18 J 1594-3.11 0.9929-13.25-15.1-8.76 2281-4.36 0.9900-18.97-25.5-11.36 K 1741-3.24 0.9915-14.48-16.2-9.65 2466-4.74 0.9894-20.51-28.6-11.97 L 1801-3.38 0.9919-14.98-17.4-9.80 2573-5.00 0.9892-21.39-30.8-12.22 M 1899-3.62 0.9931-15.79-19.3-10.02 2514-4.86 0.9893-20.90-29.7-12.06 N 2073-3.81 0.9930-17.24-20.9-11.00 2857-5.54 0.9887-23.75-35.3-13.23 2024-3.80 0.9937-16.83-20.8-10.62 2578-4.91 0.9891-21.43-30.1-12.47 P 2072-3.82 0.9925-17.23-21.0-10.97 2774-5.40 0.9890-23.06-34.1-12.89 naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P

0-5 y = 1.7255x + 7.1633 r xy = 0.9905-10 -15 S S 0 0-20 -25-30 -35-40 -25-20 -15-10 -5 0 H H 0

Physico-chemical descriptors: Molecular weight (M w ); Solute's solubility in water (S); Logarithm of the partition coefficient between n-octanol and water (log P). Geometrical descriptors: van der Waals volume (V w ); van der Waals surface area (A w ). Molecular shape descriptors: Length to breadth ratio - L/B; Molecular topology: Connectivity index - ; Correlation factor - F. rganic Descriptor M w V w log P S F L/B Modifier Function M w =f(log k) V w =f(log k) Log P=f(log k) Log S=f(log k) =f(log k) F=f(log k) L/B=f(log k) ACN Mean r xy 0.9941 0.9918 0.9937-0.9701 0.9964 0.9974 0.3540 s 0.0010 0.0017 0.0009 0.0007 0.0006 0.0010 0.0111 EL Mean r xy 0.9800 0.9852 0.9865-0.9584 0.9832 0.9874 0.4367 s 0.0040 0.0043 0.0024 0.0048 0.0021 0.0023 0.0156

mau F Column: Ultra Biphenyl, 150 mm L x 2.1 mm i.d. x 3 m d.p. H 2 /ACN: 50/50 to 20/80 in 15 min.; 0.3 ml/min; 25 o C; 0 A B D C E H G K + J M I L Si Si Si N P Si 0 2 4 6 8 10 12 14 16 18 min naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P

mau F Column: Ultra Biphenyl, 150 mm L x 2.1 mm i.d. x 3 m d.p. H 2 /MeH: 30/70 to 0/100 in 20 min.; 0.2 ml/min; 25 o C; C E G H K J I + L M N P A B D 0 0 5 10 15 20 25 min naphthalene A; acenaphtylene B; fluorene C; acenaphtene D; phenanthrene E; anthracene F; fluoranthene G; pyrene H; chrysene I; benzo(a)anthracene J; benzo(b)fluoranthene K; benzo(k)fluoranthene L; benzo(a)pyrene M; dibenzo(a,h)anthracene N; benzo(g,h,i)perylene ; indeno(1,2,3-c,d)pyrene - P

1. The assay of PAHs in natural/artificial matrices is still of high importance and actuality. 2. Highly lipophilic matrices are extremely challenging for sample preparation procedures of PAHs for chromatographic analysis. 3. Replacement of ACN by EL in LC mobile phases does not essentially change retention, selectivity and interactions with the S. Ph. While the increased pressure drop may be sustained by means of UP/UHP-LC approaches, detectability remains a major concern. 4. Involvement of interactions in the LC chromatographic mechanism of PAHs does not necessarily increase separation selectivity.

Author acknowledges the financial support given through the Romanian project PNII_ID_PCE_2011_3_0152.