Lecture-XXVI. Time-Independent Schrodinger Equation

Similar documents
Lecture-XXV. Time-Independent Schrodinger Equation

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

Harmonic Oscillator I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

Quantum Mechanics: Particles in Potentials

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

Waves and the Schroedinger Equation

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

( ) = 9φ 1, ( ) = 4φ 2.

Brief review of Quantum Mechanics (QM)

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Second quantization: where quantization and particles come from?

6. Qualitative Solutions of the TISE

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

The Quantum Theory of Atoms and Molecules

Problem Set 5 Solutions

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

CHAPTER 8 The Quantum Theory of Motion

Notes on Quantum Mechanics

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Problems and Multiple Choice Questions

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator

(Refer Slide Time: 1:20) (Refer Slide Time: 1:24 min)

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5

Quantum Physics Lecture 8

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II:

Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Lecture 6 Quantum Mechanical Systems and Measurements

Quantum Mechanics II

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates.

Tutorial for PhET Sim Quantum Bound States

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2

Physics 221A Fall 2017 Notes 27 The Variational Method

David J. Starling Penn State Hazleton PHYS 214

CHAPTER 6 Quantum Mechanics II

Physics 70007, Fall 2009 Answers to Final Exam

Quantum Chemistry Exam 2 Solutions

Minimal coupling and Berry s phase

PY 351 Modern Physics - Lecture notes, 3

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

N independent electrons in a volume V (assuming periodic boundary conditions) I] The system 3 V = ( ) k ( ) i k k k 1/2

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Introduction to Electronic Structure Theory

{(V0-E)Ψ(x) if x < 0 or x > L

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

The Schrödinger Equation

Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well

1 Commutators (10 pts)

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

Problem 1: A 3-D Spherical Well(10 Points)

Announcement Second HW will be due on Monday Sept 19! The text book is on reserve in SERC reading room

7. Numerical Solutions of the TISE

PHYS Concept Tests Fall 2009

Physics 443, Solutions to PS 2

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

1 Position Representation of Quantum State Function

Quantum Mechanics Basics II

REVIEW: The Matching Method Algorithm

2m r2 (~r )+V (~r ) (~r )=E (~r )

1 Measurement and expectation values

Statistical Interpretation

Particle in one-dimensional box

Lecture 12. The harmonic oscillator

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi

2 Canonical quantization

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors,

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions.

Physics-I. Dr. Anurag Srivastava. Web address: Visit me: Room-110, Block-E, IIITM Campus

Quantum Mechanics in One Dimension. Solutions of Selected Problems

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

The Particle in a Box

7.4. Why we have two different types of materials: conductors and insulators?

Sample Quantum Chemistry Exam 2 Solutions

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev

Bound and Scattering Solutions for a Delta Potential

The Harmonic Oscillator: Zero Point Energy and Tunneling

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

Transcription:

Lecture-XXVI Time-Independent Schrodinger Equation

Time Independent Schrodinger Equation: The time-dependent Schrodinger equation: Assume that V is independent of time t. In that case the Schrodinger equation can be solved by the method of separation of variables: Then dividing through by ψf: Nowtheleftsideisafunctionoftalone,andtherightsideisafunctionofxalone.The only way this can possibly be true is if both sides are constant (say E, the exact meaning will be clear later). Then The second is called the time-independent Schrodinger equation; it requires the knowledge of the potential V. Before solving the time-independent Schrodinger equation for certain potentials, let us understand the property of the solution. or

I. Stationary states: Although the wave function itself, does obviously depend on t, the probability density does not--the time dependence cancels out. That is why they are called stationary states. The same thing happens in calculating the expectation value of any dynamical variable reduces to Every expectation value is constant in time. In particular, <x> is constant, and hence <p>=0.nothingeverhappensinastationarystate. Note: To become the expectation values real, finite, well-behaved physical quantities, the ψ(x) and dψ(x)/dx then must be finite, single valued and continuous.

II. States of definite total energy: In classical mechanics, the total energy (kinetic plus potential) is called the Hamiltonian: The corresponding Hamiltonian operator is : Thus the time-independent Schrodinger equation can be written as and the expectation value of the total energy is and hence So the standard deviation in His given by But remember, if σ=0, then every member of the sample must share the same value. Conclusion: A separable solution has the property that every measurement of the total energy is certain to return the value E. If the stationary state ψis eigenfunctionof any QM operator A, then there will be no uncertainty on the measured value a by operating A on ψ.

III. Discrete energy levels: How a differential equation involving continuous functions and continuous variables give rise to discrete energy levels? Consider an electron confined in a region of space by some kind of a potential well. Now the electron must have well defined discrete energy levels. m k = V ( x) E ħ ψ(x) d ψ dx k ψ = 0 Exponential solution d ψ dx + k ψ = 0 Oscillatory solution d ψ dx k ψ = 0 Exponential solution The solutions represented by dotted lines correspond to E c ± E. There exists a physically acceptable solution only for a particular value of E.

It does not mean that there is only one energy for a particle bound in a potential well. Other energies are possible but not energies arbitrarilyclosetoe c (ore). ψ(x) Note that the solution we have plotted in the last slide, crosses the x-axis 4 times within the regionx 1 <x<x. Ground state 1st Excited state nd Excited state 3rd Excited state 4th Excited state If there exists a solution corresponding to an energy less than E, then the solution must cross the x-axis only 3 times, only times, only once ornotatall withintheregionx 1 <x<x. There may also be other solutions corresponding to values of the energy higher than once shown. Conclusion is that if a particle is bound in a potential well, its energy can take only the certain special values in a discrete energy spectrum.

IV. E 0 must be greater than V min if E < V min, then ψ and ψ always have the same sign: If ψ is positive (negative), then ψ is also positive (negative). This means that ψ always curves away from the axis. However, it has got to go to zero as x ± (else it would not be normalizable). At some point it s got to depart from zero (if it doesn t, it s going to be identically zero everywhere), in (say) the positive direction. At this point its slope is positive, and increasing, so ψ gets bigger and bigger as x increases. It can t ever turn over and head back toward the axis, because that would require a negative second derivative it always has to bend away from the axis. By the same token, if it starts out heading negative,itjustrunsmoreandmorenegative.inneithercaseisthereanywayforitto comebacktozero,asitmust(atx )inordertobenormalizable.

V. Eigenvalues are real: Ĥψ = Eψ Ĥ ψ = E ψ * * * Since the Hamiltonian is a Harmitian operator, then + + * * ( ) ˆ ( ) = ( ) ˆ ( ) ψ x Hψ x dx ψ x H ψ x dx + + * * * * E ψ x ψ x dx = E ψ x ψ x dx E = E E ( ) ( ) ( ) ( ),, is real. VI. Eigenstates of different eigenvalues are orthogonal: Hˆ ψ = Eψ ; Hˆ ψ = E ψ 1 1 1 Hˆ ψ = E ψ ; Hˆ ψ = E ψ * * * * * * 1 1 1 + + * * ψ ψ1 ψ1 ψ ( ) ˆ ( ) = ( ) ˆ ( ) x H x dx x H x dx E = E, E = E * * 1 1 + + + * * * * 1 ψ ψ1 ψ1 ψ ψ1 ψ ( ) ( ) = ( ) ( ) = ( ) ( ) E x x dx E x x dx E x x dx + + * * ( ) ψ ( ) ψ ( ) ψ ( ) ψ ( ) E E x x dx = 0; Since E E, x x dx = 0 1 1 1 1 + * 1 for ψ m ( x) ψ n ( x) dx = δmn, δmn = 0 for n n = m m

VII. Linear combination of separable solutions: The general solution is a linear combination of separable solutions. As the timeindependent Schrodinger equation yields an infinite collection of solutions ψ 1 (x), ψ (x), ψ 3 (x),...,eachwithitsassociatedvalueofenergyeigenvaluese 1,E,E 3...;thus there is a different wave function for each allowed energy: Now the (time-dependent) Schrodinger equation has the property that any linear combinations of solutions is itself a solution. Once we have found the separable solutions, then, we can immediately construct a much more general solution, of the form It so happens that every solution to the (time-dependent) Schrodinger equation can bewritten in thisform--it is simply amatter offinding therightconstants (c 1,c,...) so astofittheinitialconditionsfortheproblemathand.

VIII. Physical Interpretation of Expansion Coefficients: The general solution can be written as a linear combinations of eigenfunctions as Now the orthonormalityrelation can be used to find c n * ( ) ( ) * ( ) ( ) * n x Ψ x,0 dx = dx n x cm m x = cm dx n ( x) m ( x) = cm mn = cn m= 1 m= 1 m= 1 ψ ψ ψ ψ ψ δ c n tells us how much ψ n is contained in ψ(x,t), and a measurement has to return one of the eigenvalues of an operator Q. * * * * 1 = Ψ ( x,0 ) Ψ ( x,0) dx = cmcn ψ m ( x) ψ n ( x) dx = cmcnδ mn = cn m= 1 n= 1 m= 1 n= 1 n= 1 c n is the probability to find a particle in an eigenstate ψ n in a generalized wavefunction ψ(x,t). * * * * ˆ m n n ψ m ( ) ψ n ( ) m n nδmn n n m= 1 n= 1 m= 1 n= 1 n= 1 H = Ψ HΨ dx = c c E x x dx = c c E = c E This is a manifestation of conservation of energy in quantum mechanics.

Analogy to Vector Analysis QM Vector The wave functions ψ(x) form a vector space, called the Hilbert space, the energy eigenfunctionsu n (x)formabasis.

The Infinite Square Well Potential The infinite square well potential is written as For instance, take the potential for a conduction electron in a block of metal to be a finite square well. Infinite square well potentials can be used to discuss the quantum mechanical properties particles which are strictly confined within certain region of space. In the region within the well V=0, hence the Schrodinger equation is given by with E > 0. or The above equation is the (classical) simple harmonic oscillator equation; the general solution is where A and B are arbitrary constants. Typically, these constants are fixed by the boundary conditions of the problem.

Both Ψ and dψ/dx are continuous. But where the potential goes to infinity only the first of these applies. At x = a Therefore At x = 0 so and hence then, which means that if A= 0, in which case we're left with the trivial nonnormalizable solution ψ(x) = 0. But k = 0 is no good. Again, that would imply ψ(x) = 0. The negative solutions give nothing new, since sin(-θ) = - sin(θ) and the minus sign can be absorbed into A. So the distinct solutions are n ( ) sin ψ x = A k x for n Through normalization, Acan be fixed. Inside the well, then, the solutions are 0 if a b sin axsin bxdx = cos ax cos bxdx = sin ax cos axdx = 0 π if a = b π π π 0 0 0

Position and momentum expectations for the nth stationary state Note: it is true for stationary states of any potential.

Energy quantization: Since In sharp contrast to the classical case, a quantum particle in the infinite square well can only have certain specific values. The total energy of the particle in the well is quantized. Two nodes even One node odd Zero node even 0 a 0 a The first energy eigenvalue for the infinite square well it is This is called the zero-point energy. It is the lowest possible total energy the particle can have if it is bound by the infinite square well potential to the region 0<x<a. The particle cannot have zero total energy. The phenomenon is basically a result of the uncertainty principle. Helium will not solidify even at the lowest attainable temperature ( 0.001 K), unless a very high pressure is applied.

Eigenstates are mutually orthogonal: since Eigenstates form a complete set: The stationary states are then The general solution to the (time-dependent) Schrodinger equation is a linear combination of stationary states: The initial wave function then can be written as Now the orthonormalitycondition determines the actual coefficients: Therefore given the initial wave function, ψ(x,0), compute the expansion coefficients c n, and then one could obtain ψ(x,t). Having the wave function, one can compute any dynamical quantities of interest. and n= 1 c n = 1

Example: Consider the particle in the infinite square well has its initial wave function an even mixture of the first two stationary states: Find ψ(x, t), Compute <x>, <p> and <H>. First, normalize the wave function: Then ψ(x, t) is given by Position expectation: = where

Momentum expectation: Energy expectation: You could get either or with equal probability So it s the average of E 1 and E.