Diagrammatic extensions of (E)DMFT: Dual boson

Similar documents
Introduction to DMFT

Diagrammatic Monte Carlo methods for Fermions

arxiv: v2 [cond-mat.str-el] 17 Jan 2011

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Cluster Extensions to the Dynamical Mean-Field Theory

10 Path Integrals and Dual Fermions

Electronic correlations in models and materials. Jan Kuneš

Nano-DMFT : the electronic structure of small, strongly correlated, systems

O. Parcollet CEA-Saclay FRANCE

Diagrammatic Monte Carlo simulation of quantum impurity models

A continuous time algorithm for quantum impurity models

Mott transition : beyond Dynamical Mean Field Theory

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

Recent advances on Hubbard models using quantum cluster methods

Magnetic Moment Collapse drives Mott transition in MnO

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

arxiv: v5 [cond-mat.str-el] 29 Jun 2018

Continuous Time Monte Carlo methods for fermions

Fluctuating exchange theory of dynamical electron correlations and magnetism

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap

An efficient impurity-solver for the dynamical mean field theory algorithm

Cluster Functional Renormalization Group

Introduction to SDFunctional and C-DMFT

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Mean field theories of quantum spin glasses

1 GW+DMFT. KH Computational Physics QMC. Dynamical Mean Field Theory + Band Structure Method. Γ[G] = Trlog G Tr(ΣG) + Φ[G] (1)

9 Making Use of Self-Energy Functionals: The Variational Cluster Approximation

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

Spectral Density Functional Theory

NiO - hole doping and bandstructure of charge transfer insulator

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997

Pairing Symmetry of Superfluid in Three-Component Repulsive Fermionic Atoms in Optical Lattices. Sei-ichiro Suga. University of Hyogo

4 Development of the LDA+DMFT Approach

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Outline PGeneral Many body 2Pconsistent Conclusions Basics

DMFT for correlated bosons and boson-fermion mixtures

Continuous time QMC methods

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Role of Hund Coupling in Two-Orbital Systems

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

Green s functions: calculation methods

Quantum Cluster Methods: An introduction

w2dynamics : operation and applications

Solution of the Anderson impurity model via the functional renormalization group

Bose-Hubbard Model (BHM) at Finite Temperature

The Gutzwiller Density Functional Theory

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Topological Kondo Insulators!

The nature of superfluidity in the cold atomic unitary Fermi gas

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

IMPACT ionization and thermalization in photo-doped Mott insulators

Progress & challenges with Luttinger-Ward approaches for going beyond DFT

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

Preface Introduction to the electron liquid

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

Master theses & project works. AG Toschi & AG Held

Local moment approach to multi-orbital Anderson and Hubbard models

Field-Driven Quantum Systems, From Transient to Steady State

An introduction to the dynamical mean-field theory. L. V. Pourovskii

Realistic Materials Simulations Using Dynamical Mean Field Theory

Quantum Cluster Methods (CPT/CDMFT)

TKM II: Equation of motion technique - Anderson model and screening (RPA)

Dynamical Mean Field within Iterative Perturbation Theory

Part III: Impurities in Luttinger liquids

GW quasiparticle energies

Conference on Superconductor-Insulator Transitions May 2009

Many-body excitations in undoped Graphene

Quantum Cluster Methods

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

A typical medium approach to Anderson localization in correlated systems.

The bosonic Kondo effect:

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Parquet approximation for the 4 Ã 4 Hubbard cluster

arxiv: v2 [cond-mat.str-el] 11 Nov 2010

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Examples of Lifshitz topological transition in interacting fermionic systems

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Tunneling Into a Luttinger Liquid Revisited

Spontaneous symmetry breaking in fermion systems with functional RG

Present and future prospects of the (functional) renormalization group

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

Theory of carbon-based magnetism

Surprising Effects of Electronic Correlations in Solids

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

Transport Coefficients of the Anderson Model via the numerical renormalization group

GW-like approaches to quantum transport. Rex Godby

arxiv: v1 [cond-mat.str-el] 24 Aug 2011

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

Many-body effects in iron pnictides and chalcogenides

Transcription:

Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014

Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University of Hamburg, Germany) Erik van Loon (University of Nijmegen, The Netherlands) Junya Otsuki (Tohoku University, Japan) Olivier Parcollet (CEA, Saclay, France) Alexey Rubtsov (Moscow State University, Russia)

Outline Motivation: Diagrammatic extensions of DMFT Overview Existing approaches Underlying idea Dual fermion: convergence properties Collective excitations: dual boson approach EDMFT Formalism Impurity Solver Collective excitations: DMFT / EDMFT

Motivation include momentum dependence beyond DMFT quantum criticality long-range Coulomb interaction collective excitations Feasible / accurate many body approaches for real materials...

Diagrammatic extensions of (extended) DMFT Diagrammatic extension of DMFT [H. Kusunose J. Phys. Soc. of Japan 75, 054713 (2006)] Multiscale approach [C. Slezak, M. Jarrell, T. Maier, and J. Deisz, arxiv:0603421 (2006)] DΓA [A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75, 045118 (2007)] Dual Fermion [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008)] Dual Boson [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Ann. Phys. 327, 1320 (2012)] One-particle irreducible approach [G. Rohringer, A. Toschi, H. Hafermann, K. Held, V. I. Anisimov, and A. A. Katanin, Phys. Rev. B 88, 115112 (2013)]

Diagrammatic extensions of DMFT: underlying idea U (τ τ ) impurity model = Σ imp, vertex γ imp ω utilize effective two-particle interaction of the impurity model Γ = γ + γ Γ eh + Γ v ee Γ Σ(ω, k) = 1 γ Γ 2 γ = Γ eh + Γ + v 2 γ ee γ include spatial correlations through diagrammatic corrections: second-order, FLEX, Parquet, diagrammatic MC (?)...

Complementarity to cluster approaches Clusters Diagrammatic extensions Control parameter: cluster size Large clusters Rigorous summation of all diagrams on the cluster Diagrams chosen on physical considerations limited cluster size, difficult to converge in practice Truncation of diagrammatic series and fermion interaction

Illustration: dual fermion paramagnetic 2D Hubbard model, U/t = 8, T /t = 0.235 DMFT Γ E f M M Γ X Dual Fermion Σ d = Q = (π, π) X ǫ k+q = ǫ k Γ Captures short-range dynamical AF correlations Critical U c /t 6.5 in good agreement with cluster methods [S. Brener, HH, A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein PRB 77, 195105 (2008)]

Convergence Properties I Small parameter? weak coupling limit (U 0): γ (4) U, γ (6) U 2,... strong coupling limit (t h k 0); atomic limit ( 0): Gω d 0 [ (k) = g ω gω + ( h k ) 1] 1 gω g ω h k g ω

Convergence Properties II λ (d) max 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 T/t = 0.4 16 16 DMFT DF a b DF a d DF a f LDFA 2 4 6 8 10 12 U/t T Γ irr, m N ωω Ω=0 G ω (k)g ω (k+q) φ ω = λφ ω ω k a c e f b d Γ irr, G m ω +Ω(k + q) ωω Ω DF: Γ irr = γ (4), G = G d DMFT: Γ irr = γ irr imp, G = G DMFT [HH, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, H. Monien, Phys. Rev. Lett. 102, 206401 (2009)]

Model Extended Hubbard model Hamiltonian H = t ( ) c rσc r δσ + c r δσ c rσ rδσ + U r n r n r + 1 2 rr V (r r )n r n r. r: discrete lattice site positions; half bandwidth D = 1 V q = 0 local interaction Hubbard model (2D) V q = V q 2, (screened) Coulomb interaction (3D) V q = 2V (cos q x +cos q y ), nearest-neighbor interaction (2D)

Extended dynamical mean-field theory (EDMFT) Treatment of models with long-range interaction V q Mapping to impurity model with retarded interaction W ω S imp [c, c] = σ c σ[ı + µ σ ]c σ + U ω n ω n ω + 1 n ω W ω n ω. 2 ω Self-consistency G 1 Xω 1 (k) = (g imp ) 1 + ɛ k (q) = (χ imp ) 1 + W ω V q g imp χ imp ω ω = 1 G (k) N k = 1 X ω (q) N q [Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 (1996)] [H. Kajueter, Ph.D. thesis, Rutgers University (1996)] [J. L. Smith and Q. Si, Phys. Rev. B 61, 5184 (2000)] [R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110 (2001)]

dual bosons: basic idea S lat [c, c] = iσ c iσ[ı + µ]c iσ + U qω n qω n q, ω + ε k ckσ c kσ + 1 2 kσ Introduce impurity problem at each lattice site V q n qω n q ω. qω = S lat [c, c] = i S imp [c iσ, c iσ ] kσ c kσ ( ɛ k )c kσ ωq n ωq (W ω V q )n ωq decouple non-local terms through Hubbard-Stratonovich transformations, integrate out original fermions [A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Ann. Phys. 327, 1320 (2012)]

Transformation to Dual Fermions e c kσ ( ɛ k)c kσ = det [ g 1 D[f, f ]e f kσ g 1 ( ɛ k )g 1 ] 1 ( ɛ k )g 1 f kσ fkσ g 1 c c g 1 f kσ e 1 2 n ωq(w ω V q)n ωq = det [ χ 1 ω (W ω V q )χ 1 ω ] 1 2 D[φ] (2π) N e φωqχ 1 ω (W ω V q)χ 1 ω φ ωq φ ωqχ 1 ω n ωq n ωqχ 1 ω φ ωq dual action S[f, f ] = kσ fkσ [G d 0 (k)] 1 f kσ + i V [f i, f i ; φ i ] V [f, f ; φ] = 1 4 γ 1234f 1 f 2 f 3 f 4 + λ 123 f 1 f 2 φ 3 +... G d 0 (k) = [ g 1 + ( h k ) ] 1 g Xω d 0 (k) = [ χ 1 ω + (W ω V q ) ] 1 χω

Dual perturbation theory Evaluate fermionic and bosonic self-energies in dual perturbation theory Σ, Π (a) G (0) k (b) X qω (0) + ω γ (c) γ imp ω + ω + ω (d) λ imp ω ω

Polarization corrections Σ = Π = 0 corresponds to (extended) DMFT: G 1 k Xqω 1 Define physical polarization: = g 1 (1 + Σ k g ) 1 + ɛ k = χ 1 ω (1 + Π qω χ ω ) 1 + W ω V q X 1 qω = Π 1 qω V q Π generates polarization corrections to EDMFT polarization This talk: Σ = 0, Π = Π 1 qω = χ ω (1 + Π qω χ ω ) 1 + W ω = λ Λ Λ λ Γ λ + Γ = γ + γ Γ

Impurity solver Hybridization expansion CTQMC with retarded interaction U ω and improved estimators n (τ ; τ) µscr 1 0 β K(τ τ ) Uscr 0 n (τ ; τ) Z = Z at k=0 dτ whyb (τ )w at (τ )w ret (τ ) w at (τ ) = e 1 2 w ret (τ ) = e 1 2 ij U ij l ij e µ i l ii α i α j ij 2k i,j α i,α j >0 sα i sα j K(τα i τα j ) e 2K (0 + ) i j ij l ij +K (0 + ) i l ii, K (τ) = U(τ), K(0) = K(β) = 0 [P. Werner et al., PRL 97, 076405 (2006)] [P. Werner et al., PRL 104, 146401 (2010)]

Improved estimators Σ a (iω) = F a(iω) G a (iω) ; F st a (τ τ ) = j F = F st +F ret nj (τ)u ja c a (τ)c a (τ ) F ret ab (τ τ ) = nj( τ) U( τ τ) a b τ τ β Fa ret (τ τ ) = d τ 0 i ni ( τ)u ret ( τ τ)c a (τ)c a (τ ). 0-0.1 β d τn j ( τ)u ret ( τ τα) e j 0 = 2K (0 + ) s βj K (τ βj τα) e j β j Im Σ(ın) -0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9 n Im Σ(ın) 0-0.2-0.4-0.6-0.8-1 -1.2-1.4-1.6 0 2 4 6 8 10 12 14 16 n 0 2 4 6 8 10 12 14 16 n V = 0.00 V = 0.40 V = 0.60 V = 0.72 [HH, Phys. Rev. B 89, 235128 (2014)]

Improved estimators for vertex γ (4) + G (3),con ab (ı, ıω) = i i G a (i)f (3) ab (ı, ıω) F a(ı)g (3) ab (ı, ıω) + ω + ω + ω + ω } } {{ } } {{ (4) con G ω GG+ωχωλω { }} { γ (3) + ω } {{ } (3) con G ω ω (4) disc G ω ω + + ω } {{ } (3) disc G ω n λ a (ı, ıω) = 1 χ(ıω) ( b G 1 a (ı)g 1 (ı + ıω) a ) G (3),con ab (ı, ıω) 1 Re λn,ωm Re λn,ωm 3 2 1 0 1 2 4 3 2 1 01 2 m = 0 m = 4 V = 0.00 V = 0.40 V = 0.60 V = 0.72 3 2 1 0 1 2 3 n [HH, Phys. Rev. B 89, 235128 (2014)]

Hubbard model (2D) Collective charge excitations: DMFT (V q = 0) Exactly equivalent to DMFT susceptibility a) Γ = Γ irr + Γ irr Γ b) χ = + Γ zero sound mode in correlated metallic state

Simpler approximations = = ω ω 4 U = 2.20 3 2 1 0 Γ X M Γ 4 U = 2.20 3 2 1 0 Γ X M Γ approximations violate Ward identity (continuity equation) 0.12 0.1 0.08 0.06 0.04 0.02 0 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 q F µ Γ µ (k, q) = G 1 (k) G 1 (k + q) improper treatment of vertex corrections leads to qualitatively wrong results

DMFT susceptibility DMFT is conserving! Luttinger-Ward functional Φ[G i j ] = i Φ[G i i ] = i φ imp [G i i ] Σ ij = δφ[g i j ] = δφ[g i i ] δg ji δg ii δ ji Γ irr ijkl = δ2 Φ[G i j ] = δ2 φ[g l l ] δg ji δg lk δg 2 δ li δ lj δ lk ll Σ = Σ imp, Γ irr = Γ irr,imp [G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961)][G. Baym, Phys. Rev. 127, 1391 (1962)]

Ward identity Γ µ;,ω (k, q) =γ µ (k, q) T k Γ irr ω G σ (k )G +ω(k + q)γ µ;,ω(k, q). Λ µ = χ Γ Γ irr µ = + Γ γ µ µ γ µ q F µ Γ µ; (k, q) =q F µ γ µ (k, q) T k Γ irr ω G (k )G +ω(k + q)[q F µ Γ µ; (k, q)] Σ+ω Σ, T Γirr ω [g +ω g ] 0.5 0 0.5 1 1.5 2 2.5 Σ+ω Σ, T Γirr ω [g +ω g ] 10 m = 1 m = 1 15 m = 3 m = 3 m = 5 m = 5 m = 7 m = 7 20 1 0.5 0 0.5 1 1 0.5 0 0.5 1 n n 10 5 0 Σ U = 2.25 5 U = 2.45 +ω Σ ω = T Γ irr [g +ω g ] ω ω

Collective charge excitations: EDMFT (V q = V /q 2, 3D) EDMFT: X ω (q) = ω 2.0 1.5 1.0 0.5 0.0 Γ 1 [(χ imp ω ) 1 + W ω ] V q RPA: EDMFT X ω (q) = 1.20 1.00 0.80 0.60 0.40 0.20 0.00 Π RPA ω 1 (q) V q 1 + V Π ω(q) /q 2 = 0 1 + V Π ω(q) (q)/q 2 = 0 Π ω 1/ω α = ω 1/q 2/α Π RPA ω (q) = χ 0 ω(q) g q 2 f (ω)

Collective charge excitations: (V q = V /q 2, 3D) = + ω 2.0 1.5 1.0 0.5 0.0 Γ dual boson 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00-0.10 Πωm (q) 0.60 0.50 0.40 0.30 0.20 m = 0 m = 1 m = 3 m = 5 m = 7 m = 9 dual boson polarization Π ω (q) q 2 (ω > 0) plasma frequency: ω 2 p = e 2 a 2 tv kσ 2 cos(k z a) n kσ Imǫ 1 ω (q 0) 0.10 0.00 1.2 1.0 0.8 0.6 0.4 0.2 0.0-1 -0.5 0 0.5 1 qx[π/a] V = 0.25 V = 0.50 V = 1.00 0 0.5 1 1.5 2 ω

Extended Hubbard model: U V phase diagram (2D) transition to charge-ordered (CO) insulator 1.0 0.08 0.9 V 0.8 0.7 0.6 0.5 0.4 V 0.06 0.04 0.00 0.10 0.20 U CO divergence of X qω at q = (π, π), ω = 0 dual boson diagrams: 0.3 EDMFT 0.2 DB, 2nd ord 0.1 MET DB, ladder RPA 0.0 V = U/4 0.0 0.5 1.0 1.5 2.0 2.5 U large corrections to EDMFT even for small U RPA is reproduced non-trivially for U 0!

Summary DMFT susceptibility provides conserving description of the collective excitations of strongly correlated electrons dual boson approach yields conserving description of collective charge excitations in correlated systems (zero sound / plasmons) non-local vertex corrections are essential to fulfill charge conservation frequency dependent self-energy requires frequency dependent irreducible vertex Thank you for your attention!