Symmetries of K3 sigma models

Similar documents
Mathieu Moonshine. Matthias Gaberdiel ETH Zürich. String-Math 2012 Bonn, 19 July 2012

Generalised Moonshine in the elliptic genus of K3

Umbral Moonshine and String Theory

Generalized Mathieu Moonshine and Siegel Modular Forms

Umbral Moonshine and K3 CFTs

Mock Modular Mathieu Moonshine

Dyon degeneracies from Mathieu moonshine

The dark side of the moon - new connections in geometry, number theory and physics -

Three Projects Using Lattices, Modular Forms, String Theory & K3 Surfaces

Non-Geometric Calabi- Yau Backgrounds

Possible Advanced Topics Course

N = 2 heterotic string compactifications on orbifolds of K3 T 2

NUMBER THEORY IN STRING THEORY: SKEW, MOCK, FALSE, AND QUANTUM

Topological reduction of supersymmetric gauge theories and S-duality

Three-Charge Black Holes and ¼ BPS States in Little String Theory

Three-Charge Black Holes and ¼ BPS States in Little String Theory I

Mirrored K3 automorphisms and non-geometric compactifications

1. Introduction and statement of results This paper concerns the deep properties of the modular forms and mock modular forms.

Umbral Moonshine and the Niemeier Lattices

2. The center of G, denoted by Z(G), is the abelian subgroup which commutes with every elements of G. The center always contains the unit element e.

Elements of Topological M-Theory

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Intermediate Jacobians and Abel-Jacobi Maps

Current algebras and higher genus CFT partition functions

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

Knot Homology from Refined Chern-Simons Theory

S ps S qs S rs S 0s. N pqr = s. S 2 2g

G 2 manifolds and mirror symmetry

THE MASTER SPACE OF N=1 GAUGE THEORIES

Heterotic Torsional Backgrounds, from Supergravity to CFT

Elliptic Cohomology. Prospects in Mathematics Durham, December Sarah Whitehouse. University of Sheffield

Introduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway

Constructing compact 8-manifolds with holonomy Spin(7)

Introduction to defects in Landau-Ginzburg models

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

Kähler manifolds and variations of Hodge structures

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

The Poisson Embedding Problem

THERE IS NO Sz(8) IN THE MONSTER

Two simple ideas from calculus applied to Riemannian geometry

Geometry of moduli spaces

Spectral flow as a map between (2,0) models

15 Elliptic curves and Fermat s last theorem

String-Theory: Open-closed String Moduli Spaces

Higgs Bundles and Character Varieties

Aspects of (0,2) theories

Clifford Algebras and Spin Groups

Generalized complex geometry and topological sigma-models

MAPPING CLASS ACTIONS ON MODULI SPACES. Int. J. Pure Appl. Math 9 (2003),

Smith theory. Andrew Putman. Abstract

Spectral Networks and Their Applications. Caltech, March, 2012

Entanglement Entropy for Disjoint Intervals in AdS/CFT

Factorization Algebras Associated to the (2, 0) Theory IV. Kevin Costello Notes by Qiaochu Yuan

RG flows in conformal field theory

Mini-Course on Moduli Spaces

REPRESENTATIONS OF U(N) CLASSIFICATION BY HIGHEST WEIGHTS NOTES FOR MATH 261, FALL 2001

Fay s Trisecant Identity

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

Donaldson and Seiberg-Witten theory and their relation to N = 2 SYM

Topics in Representation Theory: Roots and Complex Structures

An invitation to log geometry p.1

Quasi Riemann surfaces II. Questions, comments, speculations

MA441: Algebraic Structures I. Lecture 26

INTRODUCTION MATHIEU GROUPS. Lecture 5: Sporadic simple groups. Sporadic simple groups. Robert A. Wilson. LTCC, 10th November 2008

5 Irreducible representations

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

Modular Moonshine II. 24 July 1994, corrected 19 Sept 1995

Surface Defects and the BPS Spectrum of 4d N=2 Theories

Lecture 8: 1-loop closed string vacuum amplitude

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Refined Chern-Simons Theory, Topological Strings and Knot Homology

Overview of classical mirror symmetry

Mirror symmetry for G 2 manifolds

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

Lie n-algebras and supersymmetry

Space of surjective morphisms between projective varieties

FROM CLASSICAL THETA FUNCTIONS TO TOPOLOGICAL QUANTUM FIELD THEORY

Moonshine: Lecture 3. Moonshine: Lecture 3. Ken Ono (Emory University)

Hodge Structures. October 8, A few examples of symmetric spaces

The Strominger Yau Zaslow conjecture

ORBIFOLDS AND ORBIFOLD COHOMOLOGY

0. Introduction 1 0. INTRODUCTION

An Introduction to Kuga Fiber Varieties

Hecke Operators for Arithmetic Groups via Cell Complexes. Mark McConnell. Center for Communications Research, Princeton

BRST and Dirac Cohomology

Varieties of Characters

Borcherds proof of the moonshine conjecture

p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007

Noncommutative invariant theory and Auslander s Theorem

HYPERKÄHLER MANIFOLDS

When 2 and 3 are invertible in A, L A is the scheme

Some developments in heterotic compactifications

The Langlands dual group and Electric-Magnetic Duality

DEFECTS IN COHOMOLOGICAL GAUGE THEORY AND DONALDSON- THOMAS INVARIANTS

Spectral flow as a map between (2,0) models

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture)

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

The tangent space to an enumerative problem

p-divisible Groups and the Chromatic Filtration

Transcription:

Symmetries of K3 sigma models Matthias Gaberdiel ETH Zürich LMS Symposium New Moonshines, Mock Modular Forms and String Theory Durham, 5 August 2015

K3 sigma models Consider CFT sigma model with target K3. Spectrum: H = M i,j N ij H i H j. repr. of N=4 superconformal algebra Full spectrum complicated --- only known explicitly at special points in moduli space.

K3 Moduli Space Moduli space of K3 sigma models is 80 real-dimensional, and explicitly given as [Aspinwall, Morrison], [Aspinwall] [Nahm,Wendland] M =O(4, 20; Z)\ O(4, 20; R)/O(4, R) O(20, R) {z } discrete identifications Grassmannian, describing pos. def. 4d subspace R 4,20

Elliptic genus Instead of full partition function consider `partial index = elliptic genus: K3(,z)=Tr RR q L 0 c 24 y J 0 ( 1) F q L c 0 24 ( 1) F 0,1 (,z). (q = e 2 i,y= e 2 iz ) - constant over moduli space - defines weak Jacobi form of weight w=0 and index m=1. [Kawai et. al.]

BPS states Define BPS states as subspace of the RR states BPS states = right-moving ground states (These are the states that contribute to elliptic genus.) Then, w.r.t left-moving N=4 have decomposition 1M H BPS = 20 H1 4,j=0 2 H1 4,j= 1 2 n=1 D n H n+ 1 4,j= 1 2 multiplicity spaces --- not constant over moduli space.

Indices However, since elliptic genus is constant over moduli space, the indices are constant. Explicitly: A n =Tr Dn ( 1) F A 1 = 90 = 45 + 45 A 2 = 461 = 231 + 231 A 3 = 1540 = 770 + 770 dims of irreps of M24! [Eguchi, Ooguri, Tachikawa]

Virtual representations Note: similar decomposition for the lowest coefficients H BPS = 20 H1 4,j=0 2 H1 4,j= 1 2 1M n=1 D n H n+ 1 4,j= 1 2 They involve virtual representations: 20 = 23 3 1 2 = 2 1.

Evidence There is by now overwhelming evidence for this structure: the `twining genera were guessed independently by [MRG, Hohenegger, Volpato] and [Eguchi, Hikami], and from them decomposition of the multiplicity spaces into M24 representations can be deduced. For the first 1000 or so multiplicity spaces, consistent decomposition was found; argument of [Gannon] then implies that this will be true for all multiplicity spaces.

Why Mathieu? Mukai Theorem: any finite group of symplectic automorphisms ( fixes all three complex structures) of a K3 surface is isomorphic to a subgroup of the Mathieu group M23. [The Mathieu group M23 is the subgroup of M24 (as a subgroup of the permutation group) that consists of the permutations with at least one 1-cycle.] However, the symplectic automorphisms of K3 have at least 5 orbits on the set of 24 points: form proper subgroups of M23.

Conjugacy classes Because of this, useful to separate the conjugacy classes of M24 into two classes: 16 classes with representative in M23 1A, 2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A, 11A, 14A, 14B, 15A, 15B, 23A, 23B geometric non-geometric 10 classes with no representative in M23 2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B.

Geometrical explanation? This geometrical point of view therefore only explains small part of M24 Mathieu Moonshine. Natural idea: generalise Mukai Theorem to K3 sigma-models. see also [Taormina, Wendland]

Moduli space Recall structure of moduli space: M =O(4, 20; Z)\ O(4, 20; R)/O(4, R) O(20, R) {z } discrete autos of fixed `charge lattice 4,20 R 4,20 R 4,20 Grassmannian, describing choice of 4-plane [Think of as the even real homology; the sigma-model is determined by choosing a Ricci flat metric and B-field on K3 manifold corresponds to choice of 4-plane.] R 4,20

K3 symmetries In string theory, the real homology can be identified with the space of RR ground states. Furthermore, the lattice 4,20 R 4,20 is the RR charge lattice of the D-branes of the theory (integer homology). The symmetries of a given K3 sigma model are those automorphisms of the RR charge lattice, i.e., elements in O(4, 20; Z), that leave the 4-plane invariant.

Susy symmetries The N=(4,4) superconformal algebra contains the R-symmetry SU(2) L SU(2) R With respect to this symmetry, the 24 RR ground states decompose as 20 (1, 1) (2, 2) as follows from H BPS = 20 H1 4,j=0 2 H1 4,j= 1 2 1M n=1 D n H n+ 1 4,j= 1 2

Mathieu symmetries The subspace can be identified with the space spanned by the 4 RR ground states that transform as (2,2). In the context of the Mathieu symmetries, the (2,2) states are singlets 2= 2 1 Thus we are interested in K3 sigma model symmetries for which the automorphisms leave pointwise invariant.

Susy symmetries Because these 4 RR ground states correspond to the 4 spacetime supercharges, the physics interpretation of the above condition is that these are the symmetries that preserve spacetime supersymmetry

Analysis of groups For a given sigma model characterised by the susy symmetry group is therefore G O(4, 20; Z) that fixes pointwise To study these groups, define (G G,L 4,20 ) L G = {v 2 4,20 : g v = v 8g 2 G} L G = L G? cf. [Kondo s proof of Mukai Thm]

Analysis of groups L G has signature (4,0) thus has negative signature, and is of rank less or equal to 20. L G Regularity of sigma model: does not contain any roots (vectors of length squared -2). Then can embed L G ( 1),! L [Nikulin] such that action of G extends to whole Leech lattice: G Co 1 Co 0 Aut( L )

Precise description In order to give more precise description of the possible symmetry groups study the subgroups of the Conway group that fix a sublattice of rank at least 4 in the Leech lattice. The detailed analysis is quite technical, but using results of Curtis, Conway et.al., and Allcock one arrives at the following list:

Classification of symmetries The possible symmetry groups of K3 sigma models are given by: [MRG,Hohenegger,Volpato] (i) G = G 0.G 00, where G 0 is a subgroup of Z 11 2, and G 00 is a subgroup of M 24 (ii) G =5 1+2 : Z 4 (iii) G = Z 4 3 : A 6 (iv) G =3 1+4 : Z 2.G 00, where G 00 is either trivial, Z 2 or Z 2 2. extra-special group semi-direct product [. normal subgroup]

Observations (1) None of the K3 sigma-models has M24 as symmetry group. [In case (i) only those elements of M24 appear which have at least 4 orbits when acting as a permutation. Thus 12B, 21A, 21B, 23A, 23B never arise.] (2) Some K3 sigma-models have symmetries that are not contained in M24. [In particular, this is the case for (ii), (iii) and (iv), as well as (i) with non-trivial G.] (3) All symmetry groups fit inside the Conway group [but there is no evidence for `Conway Moonshine in the elliptic genus.]

Existence Provided that for any `regular 4-plane, a non-singular K3 sigma model exists, the above analysis also implies that all of these cases are realised by some K3 sigma model. We have subsequently shown (see also below) that at least all cases (ii) (iv) are indeed realised. [In case (i) obviously only those combinations should be realised that come from a suitable subspace.]

Exceptional cases Call K3 sigma model exceptional if symmetry group is not contained in M24. Observation: [MRG,Volpato] If sigma model is cyclic torus orbifold, then it it is always exceptional. Every sigma model corresponding to case (ii) is equal to T 4 /Z 5 Every sigma model corresponding to case (iii) & (iv) is equal to T 4 /Z 3

Quantum Symmetry Basic idea of argument: K3 sigma model is cyclic torus orbifold if and only if it has `quantum symmetry whose orbifold is a torus. K3 = T 4 /Z n $ T 4 = K3/ Z n Suppose that K3 has a symmetry g of order n, which satisfies level matching (= trivial multiplier phase) so that orbifold is consistent.

Orbifold K3 Suppose that K3 has a symmetry g of order n, which satisfies level matching (= trivial multiplier phase) so that orbifold is consistent. By usual orbifold rules, elliptic genus of orbifold equals (,z)= 1 n nx i,j=1 g i,g j (,z) twisted twining genus g d -- can be obtained from twining genus of where d=gcd(i,j,n) by suitable modular transformation.

Orbifold theory The orbifold is a torus theory if and only if its elliptic genus vanishes for z=0. But for z=0 we have simply g d(,0) = Tr 24(g d ) = constant and hence g i,g j (,0) = Tr 24(g gcd(i,j,n) )

Orbifold theory Thus (,0) = 1 n nx i,j=1 Tr 24 (g gcd(i,j,n) ). coincides with trace in standard 24d rep of Conway group. For each conjugacy class of Conway can hence decide whether orbifold (if consistent) will lead to torus or not.

Conway classes Conway group has 167 conjugacy classes, but only 42 contain symmetries that are realised by some K3. Of these, 31 have necessarily trivial multiplier phase (since trace over 24d rep non-trivial): - 21 lead to K3, i.e. - 10 lead to T4, i.e. (,0) = 24 (,0) = 0 none of them has representative in M24 Quantum symmetry of T4-orbifold is always exceptional!

Other classes The remaining 11 classes all lead to inconsistent orbifolds (=level matching not satisfied), i.e. (,0) 6= 0, 24 except for one case that can be identified with a Z 2 torus orbifold. (Its quantum symmetry is also not inside M24.) [MRG, Taormina, Volpato, Wendland] If sigma model is cyclic torus orbifold, then its quantum symmetry is always exceptional.

Other cases To prove: Every sigma model corresponding to case (ii) is equal to T 4 /Z 5 note that case (ii) contains 5C class of Conway (not in M24) whose orbifold is a torus. We have also constructed the asymmetric orbifold explicitly and checked that it has the symmetry in case (ii). Z 5 Similarly for: Every sigma model corresponding to case (iii) & (iv) is equal to T 4 /Z 3

Exceptions However, there are also exceptional K3 sigma-models in case (i). Some of them are cyclic torus orbifolds, but some of them are not --- maybe non-abelian orbifolds? More fundamentally, it would be important to understand what the significance of being a (cyclic) torus orbifolds is (if any).

Some comments I The above analysis applies to susy preserving symmetries of full CFT sigma model however, elliptic genus only sees (BPS) part of the spectrum. The symmetries of the BPS spectrum could be larger or smaller larger: not every symmetry needs to lift to full theory smaller: symmetry generators may not define consistent operator on BPS cohomology [e.g. for T 4 /Z 2, the twining genus of quantum symmetry has formally Tr 90 (Q) = 102 ]

Some comments I (ctd) As a vector space, this cohomology is essentially the `BPS algebra of [Harvey, Moore] which is not just a quotient space, but also carries algebra structure. Thus a natural explanation of Mathieu Moonshine would be if the automorphism group of the `BPS algebra was M24. [This would also tie in nicely with the observation that Generalised Mathieu Moonshine behaves exactly like a holomorphic CFT ] [MRG, Persson, Ronellenfitsch, Volpato]

Some comments II One difficulty with trying to work this out explicitly is that at a generic point in moduli space, where dim(d n )= A n, the theory does not seem to have any (?) non-trivial symmetries. On the other hand, all known CFT descriptions of K3s (e.g. orbifolds) sit at rather special points in moduli space where most multiplicity spaces are non-minimal, i.e. dim(d n ) > A n cf. [Taormina, Wendland] How does one get rid of these additional states?

Some comments III The BPS spectrum involves virtual representations of M24. It is striking though that the `virtualness is restricted to the `massless states. Is this the analogue of the constant term in Monstrous Moonshine? [Gannon]

Some comments III (ctd) So should we get rid of these massless states, just as the Z 2 orbifold of the Leech lattice theory does for the case of Monstrous Moonshine? Incidentally, in effect this is what happens when one considers Mathieu Moonshine from the perspective of mock modular forms.

Some comments IV From the viewpoint of K3 sigma models, however, there is no natural reason to discard these massless states in fact, they are needed for correct modular behaviour So K3 perspective is really about Jacobi forms, not mock modular forms On the other hand, mock interpretation of Mathieu Moonshine will probably not involve K3 (but may be the natural analogue of Monstrous Moonshine)

The BIG question The big question thus remains: Is Mathieu Moonshine really a K3 phenomenon, or is it just a property of some other structure associated to the weak Jacobi form 0,1, e.g. the corresponding mock modular form.