Conformal blocks in nonrational CFTs with c 1

Similar documents
Indecomposability parameters in LCFT

arxiv: v3 [math-ph] 5 Nov 2018

THE FACTORIZATION OF A POLYNOMIAL DEFINED BY PARTITIONS

Holomorphic symplectic fermions

CFT and SLE and 2D statistical physics. Stanislav Smirnov

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra

Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory

Indecomposability in CFT: a pedestrian approach from lattice models

Conformal Field Theory and Combinatorics

Generators of affine W-algebras

Symmetric Jack polynomials and fractional level WZW models

Conformal Field Theories Beyond Two Dimensions

W -Constraints for Simple Singularities

Virasoro and Kac-Moody Algebra

Representation theory of vertex operator algebras, conformal field theories and tensor categories. 1. Vertex operator algebras (VOAs, chiral algebras)

LECTURE 3: REPRESENTATION THEORY OF SL 2 (C) AND sl 2 (C)

The Fyodorov-Bouchaud formula and Liouville conformal field theory

Constructing the 2d Liouville Model

Representation theory of W-algebras and Higgs branch conjecture

AdS 6 /CFT 5 in Type IIB

Liouville Quantum Gravity on the Riemann sphere

Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013

Proof of the DOZZ Formula

Fusion Rules and the Verlinde Formula

IVAN LOSEV. KEK 1 = q 2 E, KF K 1 = q 2 F, EF F E = K K 1 q q 1.

Towards conformal invariance of 2-dim lattice models

arxiv: v2 [hep-th] 26 Oct 2009

Singularities, Root Systems, and W-Algebras

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein.

Conformal Field Theory (w/ string theory and criticality)

Lecture A2. conformal field theory

Imaginary Geometry and the Gaussian Free Field

Integrability of Conformal Fishnet Theory

REPRESENTATIONS OF S n AND GL(n, C)

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

On staggered indecomposable Virasoro modules

Rational Homotopy Theory Seminar Week 11: Obstruction theory for rational homotopy equivalences J.D. Quigley

Subfactors and Topological Defects in Conformal Quantum Field Theory

Geometry of Conformal Field Theory

APPLICATIONS of QUANTUM GROUPS to CONFORMALLY INVARIANT RANDOM GEOMETRY

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Highest-weight Theory: Verma Modules

Explicit realization of affine vertex algebras and their applications

1 Unitary representations of the Virasoro algebra

Citation Osaka Journal of Mathematics. 43(2)

Classical Lie algebras and Yangians

The dimer model: universality and conformal invariance. Nathanaël Berestycki University of Cambridge. Colloque des sciences mathématiques du Québec

REPRESENTATION THEORY WEEK 7

Some applications and constructions of intertwining operators in Logarithmic Conformal Field Theory

Logarithmic CFTs as limits of ordinary CFTs and some physical applications

Vertex Algebras and Algebraic Curves

A (gentle) introduction to logarithmic conformal field theory

Operads. Spencer Liang. March 10, 2015

arxiv:hep-th/ v2 7 May 2003

REPRESENTATION THEORY inspired by COMPUTATIONAL STATISTICAL MECHANICS

2D CFT and the Ising Model

Non-abelian statistics

arxiv:q-alg/ v1 24 Apr 1995

SLE(κ, ρ ) and Conformal Field Theory arxiv:math-ph/ v1 10 Dec 2004

Vertex operator algebras, minimal models, and modular linear differential equations of order 4

Homological representation formula of some quantum sl 2 invariants

Conformal field theory, vertex operator algebras and operator algebras

arxiv:math-ph/ v2 6 Jun 2005

Combinatorial bases for representations. of the Lie superalgebra gl m n

Connecting Coinvariants

arxiv:hep-th/ v1 23 Mar 1998

LECTURE 7, WEDNESDAY

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool

Rings and groups. Ya. Sysak

On the representation theory of affine vertex algebras and W-algebras

A diagrammatic representation of the Temperley Lieb algebra. Dana C. Ernst

Defects between Gapped Boundaries in (2 + 1)D Topological Phases of Matter

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

Representation theory through the lens of categorical actions: part III

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

Introduction to Conformal Field Theory

GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE)

Bilinear equations on Painlevé τ-functions from CFT

Transcendence in Positive Characteristic

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n)

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Bidiagonal pairs, Tridiagonal pairs, Lie algebras, and Quantum Groups

Tensor categories and the mathematics of rational and logarithmic conformal field theory

THE REPRESENTATION THEORY, GEOMETRY, AND COMBINATORICS OF BRANCHED COVERS

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea

Appendix to: Generalized Stability of Kronecker Coefficients. John R. Stembridge. 14 August 2014

BOUNDARY EFFECTS IN TWO-DIMENSIONAL CRITICAL AND OFF-CRITICAL SYSTEMS

Casimir elements for classical Lie algebras. and affine Kac Moody algebras

Convergence of loop erased random walks on a planar graph to a chordal SLE(2) curve

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

THE QUANTUM DOUBLE AS A HOPF ALGEBRA

Dual Temperley Lieb basis, Quantum Weingarten and a conjecture of Jones

LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II

Heterotic Torsional Backgrounds, from Supergravity to CFT

Vertex algebras generated by primary fields of low conformal weight

SCHUR-WEYL DUALITY FOR QUANTUM GROUPS

Higher symmetries of the system /D

Transcription:

Conformal blocks in nonrational CFTs with c 1 Eveliina Peltola Université de Genève Section de Mathématiques < eveliina.peltola@unige.ch > March 15th 2018 Based on various joint works with Steven M. Flores, Alex Karrila and Kalle Kytölä Recent developments in Constructive Field Theory, Columbia University 1

PLAN Belavin-Polyakov-Zamolodchikov (BPZ) PDEs in 2D conformal field theory physical solutions : find single-valued ones? basis for solution space: conformal blocks 2

PLAN Belavin-Polyakov-Zamolodchikov (BPZ) PDEs in 2D conformal field theory physical solutions : find single-valued ones? basis for solution space: conformal blocks How to solve the PDEs? Coulomb gas formalism action of the quantum group U q (sl 2 ) on the solution space can use representation theory to analyze solution space currently works in the nonrational case 2

PLAN Belavin-Polyakov-Zamolodchikov (BPZ) PDEs in 2D conformal field theory physical solutions : find single-valued ones? basis for solution space: conformal blocks How to solve the PDEs? Coulomb gas formalism action of the quantum group U q (sl 2 ) on the solution space can use representation theory to analyze solution space currently works in the nonrational case explicit formulas? integral formulas (Coulomb gas) algebraic formulas when c = 1 and c = 2 2

INTRODUCTION: BPZ PARTIAL DIFFERENTIAL EQUATIONS 2

CONFORMAL FIELD THEORY (CFT) consider a 2D QFT with fields φ(z) impose conformal symmetry: fields φ(z) carry action of Virasoro algebra Vir Vir: Lie algebra generated by (L n ) n N and central element C [L n, L m ] = (n m)l n+m + C 12 n(n2 1) δ n+m,0, [C, L n ] = 0 central element C acts as a scalar central charge c = 1 2κ (3κ 8)(6 κ) (with κ 0) [ Initiated by Belavin, Polyakov, Zamolodchikov (1984) ] 3

PDE OPERATORS FROM VIRASORO GENERATORS at fixed z i, to each generator L m one associates a differential operator L (z i) m that acts on correlations of the fields: φ1 (z 1 ) (L m φ i (z i ) ) φ d (z d ) = L (z i) m φ1 (z 1 ) φ d (z d ) where L (z i) m = j i ( 1 + (1 m) h φ j (z j z i ) m 1 z j (z j z i ) m h φ are conformal weights of the fields φ(z): transformation rule φ(z) = ( f (z) ) hφ φ( f (z)) ) for conformal maps f 4

SINGULAR VECTORS What is the Vir -action on a field φ(z)? field φ(z) generates a Vir -module M φ = Vir.φ(z) M φ is isomorphic to a quotient of some Verma module V: M φ V/N 5

SINGULAR VECTORS What is the Vir -action on a field φ(z)? field φ(z) generates a Vir -module M φ = Vir.φ(z) M φ is isomorphic to a quotient of some Verma module V: M φ V/N Is this quotient the whole Verma module? 5

SINGULAR VECTORS What is the Vir -action on a field φ(z)? field φ(z) generates a Vir -module M φ = Vir.φ(z) M φ is isomorphic to a quotient of some Verma module V: M φ V/N Is this quotient the whole Verma module? in degenerate CFTs, N is non-trivial (containing null fields ) elements generating N are called singular vectors: P(L m : m N).φ(z) N where P is a polynomial in the Virasoro generators 5

BPZ PARTIAL DIFFERENTIAL EQUATIONS singular vector P(L m : m N).φ(z) N in the quotient M φ V/N gives rise to a PDE with D (z) = P(L (z) m : m N) where L (z i) m = D (z) φ(z)φ 1 (z 1 ) φ d (z d ) = 0 j i ( 1 + (1 m) h φ j (z j z i ) m 1 z j (z j z i ) m ) 6

BPZ PARTIAL DIFFERENTIAL EQUATIONS singular vector P(L m : m N).φ(z) N in the quotient M φ V/N gives rise to a PDE with D (z) = P(L (z) m : m N) where L (z i) m = D (z) φ(z)φ 1 (z 1 ) φ d (z d ) = 0 j i ( 1 + (1 m) h φ j (z j z i ) m 1 z j (z j z i ) m ) Benoit, Saint-Aubin (1988): explicit formulas for singular vectors when conformal weights are of type s(2s + 4 κ) 2κ ( = h1,s+1 or h s+1,1 ) s 0 Recall: c = 1 2κ (3κ 8)(6 κ) 6

BENOIT & SAINT-AUBIN PARTIAL DIFFERENTIAL EQUATIONS Benoit, Saint-Aubin (1988): explicit formulas for singular vectors when conformal weights are of type s(2s + 4 κ) ( ) = h1,s+1 or h s+1,1 2κ example: h 1,2 = 6 κ 2κ, field φ 1,2 (or φ 2,1 ): ( 3 L 2 2(2h 1,2 + 1) (L 1) 2) φ 1,2 (z) (with translation invariance) gives rise to the PDE κ 2 d ( 2 z + 2 2h ) 1,2 2 z i z z i (z i z) 2 φ1,2 (z)φ 1 (z 1 ) φ d (z d ) = 0 i=1 7

BENOIT & SAINT-AUBIN PARTIAL DIFFERENTIAL EQUATIONS Benoit, Saint-Aubin (1988): explicit formulas for singular vectors when conformal weights are of type s(2s + 4 κ) ( ) = h1,s+1 or h s+1,1 2κ example: h 1,2 = 6 κ 2κ, field φ 1,2 (or φ 2,1 ): ( 3 L 2 2(2h 1,2 + 1) (L 1) 2) φ 1,2 (z) (with translation invariance) gives rise to the PDE κ 2 d ( 2 z + 2 2h ) 1,2 2 z i z z i (z i z) 2 φ1,2 (z)φ 1 (z 1 ) φ d (z d ) = 0 i=1 in general: homogeneous PDE operators of degree s + 1 D (z) s+1 = c n1,...,n j (s, κ) L (z) n 1 L (z) n j n 1 +...+n j =s 7

BSA PARTIAL DIFFERENTIAL EQUATIONS We seek solutions F ς (z; z) to the PDE system D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, for all j = 1,..., d for variables z = (z 1, z 2,..., z d ) and c.c. z = ( z 1, z 2,..., z d ) 8

BSA PARTIAL DIFFERENTIAL EQUATIONS We seek solutions F ς (z; z) to the PDE system D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, for all j = 1,..., d for variables z = (z 1, z 2,..., z d ) and c.c. z = ( z 1, z 2,..., z d ) That is, we seek correlation functions φs1 (z 1 ; z 1 ) φ sd (z d ; z d ) = F ς (z; z)= F (k) (z 1,..., z d ) F (l) ( z 1,..., z d ) where ς = (s 1,..., s d ) φ s have conformal weights of type θ s = s(2s+4 κ) 2κ (i.e. h 1,s+1 or h s+1,1 in Kac table) k,l 8

BSA PARTIAL DIFFERENTIAL EQUATIONS We seek solutions F ς (z; z) to the PDE system D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, for all j = 1,..., d for variables z = (z 1, z 2,..., z d ) and c.c. z That is, we seek correlation functions φs1 (z 1 ; z 1 ) φ sd (z d ; z d ) = F ς (z; z) = F (k) (z 1,..., z d ) F (l) ( z 1,..., z d ) where ς = (s 1,..., s d ) φ s have conformal weights of type θ s = s(2s+4 κ) 2κ (i.e. h 1,s+1 or h s+1,1 in Kac table) k,l 8

QUESTION:? SOLUTIONS 8

QUESTION:? SINGLE-VALUED SOLUTIONS 8

CORRELATION FUNCTIONS Benoit & Saint-Aubin PDE system: D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, for all j = 1,..., d covariance: for all conformal maps f, ( n ( ) ( F ς f (z), f ( z) = f (zi ) f ( z i ) ) ) θ si F ς (z, z) i=1 F ς is defined for { (z 1,..., z d ) C d zi z j for i j } 9

CORRELATION FUNCTIONS Benoit & Saint-Aubin PDE system: D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, for all j = 1,..., d covariance: for all conformal maps f, ( n ( ) ( F ς f (z), f ( z) = f (zi ) f ( z i ) ) ) θ si F ς (z, z) i=1 F ς is defined for { (z 1,..., z d ) C d zi z j for i j } Theorem [ Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique single-valued, conformally covariant solution F ς (z, z) to the Benoit & Saint-Aubin PDEs. (Uniqueness holds up to normalization in a natural solution space.) 9

MONODROMY INVARIANT SINGLE-VALUED 10 correlation function F ς single-valued in W d = { (z 1,..., z d ) C d zi z j for i j } braid group Br d is the fundamental group of W d invariance: σ j.f ς (z, z) = F ς (z, z) j = 1, 2,..., d 1 where σ j are generators of the braid group Br d

Theorem [ Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique collection of smooth functions F ς (z, z) with ς = (s 1,..., s d ) satisfying F (1) = 1 and properties PDE system: D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, j = 1,..., d covariance: for all conformal maps f, ( n ( ) ( F ς f (z), f ( z) = f (zi ) f ( z i ) ) ) θ si F ς (z, z) i=1 monodromy invariance: σ j.f = F for all j = 1,..., d 1 power law growth: there exist C > 0 and p > 0 s.t. F ς C max ( (z j z i ) p, (z j z i ) p) 1 i< j d 11

FURTHER PROPERTIES Corollary: Asymptotics / OPE: F ς (z; z) Cs s i,s i+1 (z i+1 z i ) θ s i θ si+1 +θ s c.c. z i, z i+1 ζ where s belongs to a finite index set and C s r,t are structure constants s F (s1,...,s,...,s d )(..., z i 1, ζ, z i+2,... ; c.c. ) 12

FURTHER PROPERTIES Corollary: Asymptotics / OPE: F ς (z; z) Cs s i,s i+1 (z i+1 z i ) θ s i θ si+1 +θ s c.c. z i, z i+1 ζ where s belongs to a finite index set and Cr,t s are structure constants: ( B s ) 2 Cr,t s r,t B 0 s,s := s B 0 r,rb 0 t,t [n]! = [1][2] [n 1][n] and [n] = sin(4πn/κ) sin(4π/κ) B s r,t := 1 ( r+t s 2 r+t s 2 )! i=1 F (s1,...,s,...,s d )(..., z i 1, ζ, z i+2,... ; c.c. ) ([s]!) 2 [r + 1][s + 1][t + 1][ r+t s 2 ]! [ r+s+t 2 + 1]![ s+r t 2 ]![ t+s r 2 ]! and Γ ( 1 4 (r i + 1)) Γ ( 1 4 (t i + 1)) Γ ( 1 + 4 i) κ κ κ Γ ( ( 2 4 r+s+t i + )) 2 Γ ( ) 1 + 4 κ 2 κ Compare with the work of Dotsenko & Fateev in the 1980s: they calculated the 4-point function and structure constants 12

13 CONSTRUCTION: CONFORMAL BLOCKS Ref. In preparation; see the introduction section 1D in [arxiv:1801.10003] Flores, P. Standard modules, Jones-Wenzl projectors, and the valenced Temperley-Lieb algebra. uniqueness: representation theory + knowledge of the solution space of the PDEs ( I ll give some idea later... )

13 CONSTRUCTION: CONFORMAL BLOCKS Ref. In preparation; see the introduction section 1D in [arxiv:1801.10003] Flores, P. Standard modules, Jones-Wenzl projectors, and the valenced Temperley-Lieb algebra. uniqueness: representation theory + knowledge of the solution space of the PDEs ( I ll give some idea later... ) construction: we can write F(z; z) = U ϱ (z) U ϱ ( z) U ϱ are conformal blocks, which can be written as contour integrals á la Feigin & Fuchs / Dotsenko & Fateev ϱ

CONSTRUCTION: CONFORMAL BLOCKS Ref. In preparation; see the introduction section 1D in [arxiv:1801.10003] Flores, P. Standard modules, Jones-Wenzl projectors, and the valenced Temperley-Lieb algebra. uniqueness: representation theory + knowledge of the solution space of the PDEs ( I ll give some idea later... ) construction: we can write F(z; z) = U ϱ (z) U ϱ ( z) ϱ U ϱ are conformal blocks, which can be written as contour integrals á la Feigin & Fuchs / Dotsenko & Fateev Example: when ς = (1, 1,..., 1) U α (z) = (z i z j ) 2/κ (w r z j ) 4/κ (w r w s ) 8/κ dw, r<s i< j Γ α where Γ α are certain integration surfaces See [arxiv:1709.00249] Karrila, Kytölä, P. Conformal blocks, q-combinatorics, and quantum group symmetry. r j 13

14 Theorem [ Karrila, Kytölä, P. (2017) ] case ς = (1, 1,..., 1) Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique collection of smooth functions U α (x) ( with x = (x 1 < < x 2N ) and α planar pair partitions of 2N points ) satisfying U = 1 and properties PDE system: 1 j 2N, κ 2 ( 2 + 6/κ 1 ) 2 x 2 x j i x j x i (x i x j ) U α(x 2 1,..., x 2N) = 0 i j covariance: for all (admissible) Möbius maps µ: H H U ( µ(x 1 ),..., µ(x 2N ) ) = j µ (x j ) κ 6 2κ U α (x 1,..., x 2N ) specific asymptotics (related to fusion) power law growth: there exist C > 0 and p > 0 s.t. U α C max ( (x j x i ) p, (x j x i ) p) i< j

Theorem [ Karrila, Kytölä, P. (2017) ] case ς = (1, 1,..., 1) Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique collection of smooth functions U α (x) ( with x = (x 1 < < x 2N ) and α planar pair partitions of 2N points ) satisfying U = 1 and properties PDE system covariance asymptotics power law growth Furthermore: U α (x 1,..., x 2N ) form basis for the solution space U α give a formula for the unique single-valued (monodromy invariant) correlation function when ς = (1, 1,..., 1) F (1,1,...,1) (z; z) = α U α (z 1,..., z 2N ) U α ( z 1,..., z 2N ) 15

WHAT S NEXT? 1. RATIONAL EXAMPLES 2. IDEAS FOR PROOF 15

LOOP-ERASED RANDOM WALK (c = 2) GAUSSIAN FREE FIELD (c = 1) 15

16 LEVEL LINE OF GAUSSIAN FREE FIELD: SLE 4 (c = 1) GFF with boundary data ±λ: take boundary values λ on the left, +λ on the right zero level line: SLE κ with κ = 4 [Schramm & Sheffield (2003)] O. Schramm & S. Sheffield

CONFORMAL BLOCKS FOR GFF (c = 1) U α (x 1,..., x 2N ) = (x j x i ) 1 2 ϑ α(i, j), where ϑ α (i, j) := 1 i< j 2N +1 if i, j {a 1, a 2,..., a N } or i, j {b 1, b 2,..., b N } 1 otherwise x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ 1 2 3 4 5 6 7 8 9 10 Associate boundary data to walks i.e. planar pairings α = {{a 1, b 1 },..., {a N, b N }} where {a 1,..., b N } = {1,..., 2N}, a 1 < a 2 < < a N, and a j < b j for all j {1,..., N} 17

CONFORMAL BLOCKS FOR GFF (c = 1) U α (x 1,..., x 2N ) = (x j x i ) 1 2 ϑ α(i, j), where ϑ α (i, j) := 1 i< j 2N +1 if i, j {a 1, a 2,..., a N } or i, j {b 1, b 2,..., b N } 1 otherwise x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ 1 2 3 4 5 6 7 8 9 10 Associate boundary data to walks i.e. planar pairings α = {{a 1, b 1 },..., {a N, b N }} where {a 1,..., b N } = {1,..., 2N}, a 1 < a 2 < < a N, and a j < b j for all j {1,..., N} 17

INTERPRETATION OF U α FOR THE GFF LEVEL LINES Level lines form some connectivity and, for any β γ c βγ U γ (x 1,..., x 2N ) P[connectivity = β] = U α (x 1,..., x 2N ) where the coefficients c βγ are explicit (combinatorial) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ λ +λ +3λ +5λ +3λ +λ +3λ +λ +3λ +λ λ [arxiv:1703.00898] P., Wu, Global and local multiple SLEs for κ 4 and connection probabilities for level lines of GFF. 18

LOOP-ERASED RANDOM WALK (c = 2) GAUSSIAN FREE FIELD (c = 1) 18

CONFORMAL BLOCKS FOR LOOP-ERASED RANDOM WALKS Realize walks as branches in a wired uniform spanning tree: Connectivities encoded to planar pairings α = {{a 1, b 1 },..., {a N, b N }} where {a 1,..., b N } = {1,..., 2N}, a 1 < a 2 < < a N, and a j < b j for all j {1,..., N} The conformal blocks for c = 2 (so κ = 2) are combinatorial determinants á la Fomin, involving Poisson kernels: U α (x 1,..., x 2N ) = det ( (x ai x b j ) 2) N i, j=1 [arxiv:1702.03261] Karrila, Kytölä, P., Boundary correlations in planar LERW and UST. 19

GENERAL METHOD: HIDDEN QUANTUM GROUP SYMMETRY [arxiv:1408.1384] / JEMS, to appear Kytölä, P., Conformally covariant boundary correlation functions with a quantum group. 19

20 Theorem [ Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique collection of smooth functions F ς (z, z) with ς = (s 1,..., s d ) satisfying F (1) = 1 and properties PDE system: D (z j) s j +1 F ς(z; z) = 0, D ( z j) s j +1 F ς(z; z) = 0, j = 1,..., d covariance: for all conformal maps f, ( n ( ) ( F ς f (z), f ( z) = f (zi ) f ( z i ) ) ) θ si F ς (z, z) i=1 monodromy invariance: σ j.f = F for all j = 1,..., d 1 power law growth: there exist C > 0 and p > 0 s.t. F ς C max ( (z j z i ) p, (z j z i ) p) 1 i< j d

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l Γ 21

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l find f s.t. for all j D (z j) s j f = total derivative +1 Γ then D (z j) s j f dw = dη is exact l-form +1 21

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l Γ find f s.t. for all j D (z j) s j f = total derivative +1 then D (z j) s j f dw = dη is exact l-form +1 find closed l-surface Γ: Γ = then D (z j) s j +1 F = Γ D(z j) s j +1 f dw = Γ dη = Γ η = η = 0 21

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l Task: find f and Γ such that: D (z j) s j f = total derivative +1 Γ = D (z j) s j +1 F = 0 Γ 1. How to find f? [Feigin-Fuchs / Dotsenko-Fateev 84, Coulomb gas ]: f = (z j z i ) 2α iα j (w r z i ) 2α α i (w s w r ) 2α α i< j i,r α i = s i κ and α = 2 κ 21 r<s

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l Task: find f and Γ such that: D (z j) s j f = total derivative +1 Γ = D (z j) s j +1 F = 0 Γ 1. How to find f? [Feigin-Fuchs / Dotsenko-Fateev 84, Coulomb gas ] 2. How to choose closed Γ s.t. also get conformal covariance monodromy invariance? 21

HOW TO FIND SOLUTIONS OF PDES D (z j) s j +1 F = 0 for all j = 1,..., d Write solution in integral form & use Stokes theorem : F(z 1,..., z d ) = f (z 1,..., z d ; w 1,..., w l ) dw 1 dw l Task: find f and Γ such that: D (z j) s j f = total derivative +1 Γ = D (z j) s j +1 F = 0 Γ 1. How to find f? [Feigin-Fuchs / Dotsenko-Fateev 84, Coulomb gas ] 2. How to find Γ? Idea: Use action of quantum group on integration surfaces Γ! 21

SPIN CHAIN COULOMB GAS CORRESPONDENCE Theorem [ Kytölä, P. (2016) & Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). We have an embedding of H ς := { v M ς E.v = 0, K.v = v } onto the solution space F : H ς { solutions Γ f (z; w)dw to BSA PDEs } E, F, K generators of U q (sl 2 ) ( = quantum sl 2 (C) ) M ς = M (s1 ) M (sd ), where M (s) is the irreducible type one U q (sl 2 )-module of dimension s + 1 [arxiv:1506.02476] Karrila, Kytölä, P. Pure partition functions of multiple SLEs. CMP, 2016 22

SPIN CHAIN COULOMB GAS CORRESPONDENCE Theorem [ Kytölä, P. (2016) & Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). We have an embedding of H ς := { v M ς E.v = 0, K.v = v } onto the solution space F : H ς { solutions Γ f (z; w)dw to BSA PDEs } E, F, K generators of U q (sl 2 ) ( = quantum sl 2 (C) ) M ς = M (s1 ) M (sd ), where M (s) is the irreducible type one U q (sl 2 )-module of dimension s + 1 when ς = (1, 1,..., 1), then the map F is surjective onto conformally covariant solutions to the 2nd order BPZ PDE system D (z i) 2 F = 0 i with at most power-law growth [arxiv:1506.02476] Karrila, Kytölä, P. Pure partition functions of multiple SLEs. CMP, 2016 22

QUANTUM GROUP U q (sl 2 ) = QUANTUM sl 2 (C) generators E, F, K, K 1 deformation parameter q = e 4πi/κ e πiq relations KK 1 = 1 = K 1 K KE = q 2 EK, KF = q 2 FK EF FE = K K 1 q q 1 vectors v M (s1 ) M (sd ) functions F[v](z 1,..., z d ) Theorem [ parts 1-3: Kytölä, P. (JEMS 2018); part 4: folklore ] 1 highest weight vectors ( E.v = 0 ) 2 weight ( K.v = q λ v ) 3 projections onto subrepresentations 4 braiding F monodromy F solutions of PDEs F conformal transformation properties F asymptotics 23

HIDDEN QUANTUM GROUP SYMMETRY 24 hidden quantum group: U q (sl 2 ) ( = quantum sl 2 (C) ) vectors v M (s1 ) M (sd ) functions F[v](z 1,..., z d ) basis vectors e l1 e ld F[v](z) = Γ(v) f (z; w)dw F l1 integral functions f dw Γ l1,...,l d x1... ln 1 xn 1 ln xn x0 Γ l1,...,ln

HIDDEN QUANTUM GROUP SYMMETRY hidden quantum group: U q (sl 2 ) ( = quantum sl 2 (C) ) vectors v M (s1 ) M (sd ) functions F[v](z 1,..., z d ) basis vectors e l1 e ld F[v](z) = Γ(v) f (z; w)dw F l1 integral functions f dw Γ l1,...,l d x1... ln 1 xn 1 ln xn x0 Theorem [ parts 1-3: Kytölä, P. (JEMS 2018); part 4: folklore ] 1 highest weight vectors ( E.v = 0 ) 2 weight ( K.v = q λ v ) 3 projections onto subrepresentations 4 braiding F monodromy F solutions of PDEs F conformal transformation properties F asymptotics 24

IRREDUCIBLE REPRESENTATIONS OF U q (sl 2 ) 25 M (s) = span { e 0,..., e s } e 0 is highest weight vector: E.e 0 = 0 and K.e 0 = q s e 0 e 0 generates M (s) : e k = F k.e 0 associate contours to e k : e k = z k F adds a contour: F. z = z E. E removes a contour: z = [k] q [d k] q z

26 REPRESENTATION THEORY OF U q (sl 2 ) using coproduct : U q (sl 2 ) U q (sl 2 ) U q (sl 2 ) can define action on tensor products of representations: U q (sl 2 ) M (s1 ) M (s2 ) z 1 z 2 K.(w 1 w 2 ) := (K)(w 1 w 2 ) = K.w 1 K.w 2 E.(w 1 w 2 ) := (E)(w 1 w 2 ) = 1.w 1 E.w 2 + E.w 1 K.w 2 F.(w 1 w 2 ) := (F)(w 1 w 2 ) = F.w 1 1.w 2 + K 1.w 1 F.w 2

CALCULATING MONODROMY BRAIDING 27 vectors v M (s1 ) M (sd ) functions F[v](z 1,..., z d ) basis vectors e l1 e ld F integral functions f dw Γ l1,...,l d consider correlation function F(z 1,..., z d ) = F[v](z) = f (z; w)dw Γ f = (z j z i ) 2α iα j (w r z i ) 2α α i (w s w r ) 2α α i< j i,r monodromy can be calculated by contour deformation method: r<s z 1 z 2 σ e πi(...) z2 z1

28 CONCLUSION:! SINGLE-VALUED SOLUTION Theorem [ Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique single-valued, conformally covariant solution F ς (z, z) to the Benoit & Saint-Aubin PDEs.

CONCLUSION:! SINGLE-VALUED SOLUTION Theorem [ Flores, P. (2018+) ] Suppose κ (0, 8) \ Q ( so c = 1 2κ (3κ 8)(6 κ) 1 irrational). There exists a unique single-valued, conformally covariant solution F ς (z, z) to the Benoit & Saint-Aubin PDEs. Proposition [ Flores, P (2018+) ] There exists a unique braiding invariant vector v H ς H ς. Idea: observe that { braiding invariant vectors in H ς H ς } Hom Brn (H ς, H ς ) use representation theory to prove that dim Hom Brn (H ς, H ς ) = 1 use the Spin chain Coulomb gas correspondence bijection F : H ς H ς { solution space } to conclude with the theorem 28