Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube

Similar documents
Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations on Quad-Graphs

Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency

SYMBOLIC COMPUTATION OF LAX PAIRS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS

Symmetry Reductions of Integrable Lattice Equations

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS

arxiv: v1 [nlin.si] 25 Mar 2009

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

SYMBOLIC VERIFICATION OF OPERATOR AND MATRIX LAX PAIRS FOR SOME COMPLETELY INTEGRABLE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

Soliton solutions to the ABS list

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL.

arxiv:nlin/ v1 [nlin.si] 17 Sep 2006

From discrete differential geometry to the classification of discrete integrable systems

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions

LOWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL

GEOMETRY OF DISCRETE INTEGRABILITY. THE CONSISTENCY APPROACH

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

New Exact Solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli Equation

Integrability of P Es

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

2. Examples of Integrable Equations

group: A new connection

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman

LOWELL WEEKLY JOURNAL

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman

Two Posts to Fill On School Board

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman

Introduction of Partial Differential Equations and Boundary Value Problems

fwerg^ fmb "Liberty and Union Ono and lusoparablc."

Introduction to the Hirota bilinear method

Department of mathematics MA201 Mathematics III

LOWELL WEEKLY JOURNAL

Conservation laws for difference equations. Peter Hydon (Surrey) Elizabeth Mansfield (Kent) Olexandr Rasin (Bar-Ilan) Tim Grant (Surrey)

Multiple-Soliton Solutions for Extended Shallow Water Wave Equations

LOWELL WEEKLY JOURNAL

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Module 2: First-Order Partial Differential Equations

Classification of integrable equations on quad-graphs. The consistency approach

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

The elliptic sinh-gordon equation in the half plane

FASHIONABLE VISITORS RECORD AND GUIDE

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKI.Y JOURINAL

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Generalized bilinear differential equations

SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms

Relativistic Collisions as Yang Baxter maps

E-001 ELECTRICAL SYMBOL LEGEND SCIENCE BUILDING RENOVATION H PD SEISMIC REQUIREMENTS FOR ELECTRICAL SYSTEMS PER IBC-2012/ASCE 7-10

arxiv: v2 [math-ph] 24 Feb 2016

Lax Pairs Graham W. Griffiths 1 City University, UK. oo0oo

Weak Lax pairs for lattice equations

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO

A. H. Hall, 33, 35 &37, Lendoi

On Miura Transformations and Volterra-Type Equations Associated with the Adler Bobenko Suris Equations

Elliptic integrable lattice systems

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3

IBVPs for linear and integrable nonlinear evolution PDEs

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht

Superintegrable 3D systems in a magnetic field and Cartesian separation of variables

Hamiltonian partial differential equations and Painlevé transcendents

Linearization of Second-Order Ordinary Dif ferential Equations by Generalized Sundman Transformations

S.Novikov. Singular Solitons and Spectral Theory

Logistic function as solution of many nonlinear differential equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

Symbolic Computation of Recursion Operators of Nonlinear Differential-Difference Equations

(EccL HUt, Mosheim, p. 40.) AGC3. Rgnres. We shall now proceed to show two things:

Two dimensional manifolds

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco

Partial Differential Equations

Rogue periodic waves for mkdv and NLS equations

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations. Abstract

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Math 121 Homework 5: Notes on Selected Problems

II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa

Dispersive nonlinear partial differential equations

arxiv: v1 [nlin.si] 2 May 2017

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

A Generalization of the Sine-Gordon Equation to 2+1 Dimensions

Lump solutions to dimensionally reduced p-gkp and p-gbkp equations

Theorem 6.1 The addition defined above makes the points of E into an abelian group with O as the identity element. Proof. Let s assume that K is

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Presentation for the Visiting Committee & Graduate Seminar SYMBOLIC COMPUTING IN RESEARCH. Willy Hereman

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

Transcription:

Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube Willy Hereman Department of Applied Mathematics and Statistics Colorado School of Mines Golden, Colorado, U.S.A. http://www.mines.edu/fs home/whereman/ Applied Mathematics Mathematical Sciences Stellenbosch University, Stellenbosch, South Africa Thursday, April 24, 2014, 2:00p.m.

Collaborators Reinout Quispel & Peter van der Kamp La Trobe University, Melbourne, Australia Terry Bridgman (Ph.D. student, CSM) Research supported in part by NSF under Grant CCF-0830783 This presentation is made in TeXpower

Outline What are nonlinear P Es? Classification of integrable nonlinear P Es in 2D Lax pairs of nonlinear PDEs Lax pair of nonlinear P Es Examples of Lax pair of nonlinear P Es Algorithm (Nijhoff 2001, Bobenko & Suris 2001) Software demonstration Additional examples Conclusions and future work

What are nonlinear P Es? Nonlinear maps with two (or more) lattice points Some origins: full discretizations of PDEs discrete dynamical systems in 2 dimensions superposition principle (Bianchi permutability) for Bäcklund transformations between 3 solutions (2 parameters) of a completely integrable PDE Example: discrete potential Korteweg-de Vries (pkdv) equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0

u is dependent variable or field (scalar case) n and m are lattice points p and q are parameters Notation: (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (x, x 1, x 2, x 12 ) Alternate notations (in the literature): (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u, ũ, û, ˆũ) (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u 00, u 10, u 01, u 11 ) Example: discrete pkdv equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 Short: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0

(u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 Short: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 x 2 = u n,m+1 p x 12 = u n+1,m+1 q q x = u n,m p x 1 = u n+1,m

Systems of P Es Example: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Note: System has two single-edge equations and one full-face equation.

Concept of Consistency Around the Cube Superposition of Bäcklund transformations between 4 solutions x, x 1, x 2, x 3 (3 parameters: p, q, k) x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

Introduce a third lattice variable l View u as dependent on three lattice points: n, m, l. So, x = u n,m x = u n,m,l Move in three directions: n n + 1 over distance p m m + 1 over distance q l l + 1 over distance k (spectral parameter) Require that the same lattice holds on the front, bottom, and left faces of the cube Require consistency for the computation of x 123 = u n+1,m+1,l+1 (3 ways same answer)

x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

Verification of Consistency Around the Cube Example: discrete pkdv equation Equation on front face of cube: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Solve for x 12 = x p2 q 2 x 1 x 2 Compute x 123 : x 12 x 123 = x 3 p2 q 2 x 13 x 23 Equation on floor of cube: (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 Solve for x 13 = x p2 k 2 x 1 x 3 Compute x 123 : x 13 x 123 = x 2 p2 k 2 x 12 x 23

Equation on left face of cube: (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 Solve for x 23 = x q2 k 2 x 2 x 3 Compute x 123 : x 23 x 123 = x 1 q2 k 2 x 12 x 13 Verify that all three coincide: x 123 =x 1 q2 k 2 x 12 x 13 =x 2 p2 k 2 x 12 x 23 =x 3 p2 q 2 Upon substitution of x 12, x 13, and x 23 : x 13 x 23 x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) Consistency around the cube is satisfied!

Tetrahedron property x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) is independent of x. Connects x 123 to x 1, x 2 and x 3. x 23 x 123 x 2 x 3 x 12 q k x 13 x p x 1

Classification of 2D scalar nonlinear P Es Adler, Bobenko, Suris (ABS) 2003, 2007 Consider a family P Es: Q(x, x 1, x 2, x 12 ; p, q) = 0 Assumptions (ABS 2003): 1. Affine linear Q(x, x 1, x 2, x 12 ; p, q) = a 1 xx 1 x 2 x 12 + a 2 xx 1 x 2 +... + a 14 x 2 + a 15 x 12 + a 16 2. Invariant under D 4 (symmetries of square) Q(x, x 1, x 2, x 12 ; p, q) = ɛq(x, x 2, x 1, x 12 ; q, p) ɛ, σ = ±1 3. Consistency around the cube = σq(x 1, x, x 12, x 2 ; p, q)

Result of the ABS Classification List H H1 (x x 12 )(x 1 x 2 ) + q p = 0 H2 (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 H3 p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0

List A A1 p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 A2 (q 2 p 2 )(xx 1 x 2 x 12 + 1) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0

List Q Q1 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Q2 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Q3 (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0

Q4 (mother) Hietarinta s Parametrization sn(α + β; k) (x 1 x 2 + xx 12 ) sn(α; k) (xx 1 + x 2 x 12 ) sn(β; k) (xx 2 + x 1 x 12 ) + sn(α; k) sn(β; k) sn(α + β; k)(1 + k 2 xx 1 x 2 x 12 )=0 where sn(α; k) is the Jacobi elliptic sine function with modulus k. Other parametrizations (Adler, Nijhoff, Viallet) are given in the literature.

Peter D. Lax (1926-) Seminal paper: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467-490

Refresher: Lax Pairs of Nonlinear PDEs Historical example: Korteweg-de Vries equation u t + α uu x + u xxx = 0 α IR Key idea: Replace the nonlinear PDE with a compatible linear system (Lax pair): ( ) ψ xx + 1 6 αu λ ψ = 0 ψ t + 4ψ xxx + αuψ x + 1 2 αu xψ = 0 ψ is eigenfunction; λ is constant eigenvalue (λ t = 0) (isospectral)

Lax Pairs in Operator Form Replace a completely integrable nonlinear PDE by a pair of linear equations (called a Lax pair): Lψ = λψ and D t ψ = Mψ Require compatibility of both equations L t ψ + (LM ML)ψ = 0 Lax equation: L t + [L, M] = O with commutator [L, M] = LM ML. Furthermore, L t ψ = [D t, L]ψ = D t (Lψ) LD t ψ and = means evaluated on the PDE

Example: Lax operators for the KdV equation L = D 2 x + 1 6 αu I M = ( ) 4 D 3 x + αud x + 1 2 αu x I Note: L t ψ + [L, M]ψ = 1 6 α (u t + αuu x + u xxx ) ψ

Alternate Operator Formulations Define L = L λ I and M = M Dt Then, the Lax pair becomes Lψ = 0 and Mψ = 0 and the Lax equation becomes [ L, M] = O Challenge: Find linear commuting operators modulo the (nonlinear) PDE If S is an arbitrary invertible operator, then ˆL = SLS 1, ˆM = SMS 1, ˆDt = SD t S 1 satisfy ˆL t + [ ˆL, ˆM] = O

Lax Pairs in Matrix Form (AKNS Scheme) Express compatibility of D x Ψ = X Ψ where Ψ = ψ 1 ψ 2. ψ N D t Ψ = T Ψ, X and T are N N matrices Lax equation (zero-curvature equation): D t X D x T + [X, T] = 0 with commutator [X, T] = XT TX

Example: Lax pair for the KdV equation 0 1 X = λ 1 6 αu 0 T = 1 6 αu x 4λ 1 3 αu 4λ 2 + 1 3 αλu + 1 18 α2 u 2 + 1 6 αu 2x 1 6 αu x Substitution into the Lax equation yields D t X D x T + [X, T] = 1 6 α 0 0 u t + αuu x + u 3x 0

Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation: If (X, T) is a Lax pair then so is ( X, T) with X = GXG 1 + D x (G)G 1 T = GTG 1 + D t (G)G 1 G is arbitrary invertible matrix and Ψ = GΨ. Thus, X t T x + [ X, T] = 0

Example: For the KdV equation 0 1 X = λ 1 6 αu 0 and X = ik 1 6 αu 1 ik Here, X = GXG 1 and T = GTG 1 with where λ = k 2 G = i k 1 1 0

Reasons to Compute a Lax Pair Compatible linear system is the starting point for application of the IST and the Riemann-Hilbert method for boundary value problems Confirm the complete integrability of the PDE Zero-curvature representation of the PDE Compute conservation laws of the PDE Discover families of completely integrable PDEs Question: How to find a Lax pair of a completely integrable PDE? Answer: There is no completely systematic method

Lax Pair of Nonlinear P Es Replace the nonlinear P E by ψ 1 = L ψ (recall ψ 1 = ψ n+1,m ) ψ 2 = M ψ (recall ψ 2 = ψ n,m+1 ) For scalar P Es, L, M are 2 2 matrices; ψ = f Express compatibility: g ψ 12 = L 2 ψ 2 = L 2 M ψ ψ 12 = M 1 ψ 1 = M 1 L ψ Lax equation: L 2 M M 1 L = 0

Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation If (L, M) is a Lax pair then so is (L, M) with L = G 1 L G 1 M = G 2 M G 1 where G is non-singular matrix and φ = Gψ Proof: Trivial verification that (L 2 M M 1 L) φ = 0 (L 2 M M 1 L) ψ = 0

Example 1: Discrete pkdv Equation (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: L = tl c = t x p2 k 2 xx 1 1 x 1 M = sm c = s x q2 k 2 xx 2 1 x 2 with t = s = 1 or t = 1 DetLc = 1 k 2 p 2 and s = 1 DetMc = 1. Here, t 2 k 2 q 2 t s s 1 = 1.

Example 2: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax pair: L = tl c = t y 0 yz 1 kyy 1 pyz 1 0 z z 0 1 y 1

y 0 yz 2 M = sm c = s kyy 2 qyz 2 0 z z 0 1 y 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = 3 z y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Here, t 2 t s s 1 = y 1 y 2.

Lax Pair Algorithm for Scalar P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to P Es that are consistent around the cube Example: Discrete pkdv Equation Step 1: Verify the consistency around the cube Use the equation on floor (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 to compute x 13 = x p2 k 2 x 1 x 3 = x 3x xx 1 +p 2 k 2 x 3 x 1 Use the equation on left face (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 to compute x 23 = x q2 k 2 x 2 x 3 = x 3x xx 2 +q 2 k 2 x 3 x 2

x 23 x 123 x 2 x 12 q x 3 x 13 k x p x 1

Step 2: Homogenization Numerator and denominator of x 13 = x 3x xx 1 +p 2 k 2 x 3 x 1 and x 23 = x 3x xx 2 +q 2 k 2 x 3 x 2 are linear in x 3. Substitute x 3 = f g x 13 = xf+(p2 k 2 xx 1 )g f x 1 g into x 13 to get On the other hand, x 3 = f g x 13 = f 1 g 1. Thus, x 13 = f 1 g 1 = xf+(p2 k 2 xx 1 )g f x 1 g. Hence, f 1 = t ( xf + (p 2 k 2 xx 1 )g ) and g 1 = t (f x 1 g)

In matrix form f 1 = t g 1 x p2 k 2 xx 1 1 x 1 Matches ψ 1 = L ψ with ψ = f g f g Similarly, from x 23 = f 2 g 2 = xf+(q2 k 2 xx 2 )g f x 2 g ψ 2 = f 2 = s g 2 x q2 k 2 xx 2 1 x 2 f = M ψ. g

Therefore, L = t L c = t x p2 k 2 xx 1 1 x 1 M = s M c = s x q2 k 2 xx 2 1 x 2

Step 3: Determine t and s Substitute L = t L c, M = s M c into L 2 M M 1 L = 0 t 2 s (L c ) 2 M c s 1 t (M c ) 1 L c = 0 Solve the equation from the (2-1)-element for t 2t s s 1 = f(x, x 1, x 2, p, q,... ) Find rational t and s. Apply determinant to get t 2 s det L c = t s 1 det (L c ) 2 det (M c ) 1 det M c Solution: t = 1 det Lc, s = 1 det Mc Always works but introduces roots!

The ratio t 2 t s s 1 is invariant under the change t a 1 a t, s a 2 a s, where a(x) is arbitrary. Proper choice of a(x) = Rational t and s. No roots needed!

Lax Pair Algorithm Systems of P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to systems of P Es that are consistent around the cube Example: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Note: System has two single-edge equations and one full-face equation

Edge equations require augmentation of system with additional shifted, edge equations z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 Edge equations will provide additional constraints during homogenization (Step 2).

Step 1: Verify the consistency around the cube System on the front face: z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 zy 12 (y 1 y 2 ) y(py 2 z 1 qy 1 z 2 ) = 0

Solve for x 12, y 12, and z 12 : x 12 = x 2y 1 x 1 y 2 y 1 y 2 y 12 = (x 2 x 1 )(qy 1 z 2 py 2 z 1 ) z(y 1 y 2 )(z 1 z 2 ) z 12 = x 2 x 1 y 1 y 2 Compute x 123, y 123, and z 123 : x 123 = x 23y 13 x 13 y 23 y 13 y 23 y 123 = py 23y 3 z 13 qy 13 y 3 z 23 z 3 (y 13 y 23 ) z 123 = x 23 x 13 y 13 y 23

System on the bottom face: z 1 y x 1 + x = 0 z 3 y x 3 + x = 0 zy 13 (y 1 y 3 ) y(py 3 z 1 ky 1 z 3 ) = 0 Solve for x 13, y 13, and z 13 : x 13 = x 3y 1 x 1 y 3 y 1 y 3 z 13 y 3 x 13 + x 3 = 0 z 13 y 1 x 13 + x 1 = 0 y 13 = (x 2 x 1 )(ky 1 z 3 py 3 z 1 ) z(y 1 y 3 )(z 1 z 2 ) z 13 = x 3 x 1 y 1 y 3

Compute x 123, y 123, and z 123 : x 123 = x 23y 12 x 12 y 23 y 12 y 23 y 123 = py 2y 23 z 12 ky 12 y 2 z 23 z 2 (y 12 y 23 ) z 123 = x 23 x 12 y 12 y 23

System on the left face: z 3 y x 3 + x = 0 z 2 y x 2 + x = 0 z 23 y 2 x 23 + x 2 = 0 z 23 y 3 x 23 + x 3 = 0 zy 23 (y 3 y 2 ) y(py 2 z 3 qy 3 z 2 ) = 0 Solve for x 23, y 23, and z 23 : x 23 = x 3y 2 x 2 y 3 y 2 y 3 y 23 = (x 2 x 1 )(ky 2 z 3 qy 3 z 2 ) z(y 2 y 3 )(z 1 z 2 ) z 23 = x 3 x 2 y 2 y 3

Compute x 123, y 123, and z 123 : x 123 = x 13y 12 x 12 y 13 y 12 y 13 y 123 = qy 1y 13 z 12 ky 1 y 12 z 13 z 1 (y 12 y 13 ) z 123 = x 13 x 12 y 12 y 13 Substitute x 12, y 12, y 12, x 13, y 13, z 13, x 23, y 23, z 23 into the above to get

x 123 = (pz 1(x 3 y 2 x 2 y 3 )+ qz 2 (x 1 y 3 x 3 y 1 )+ kz 3 (x 2 y 1 x 1 y 2 ) (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 ) y 123 = pqy 3z 1 (x 2 x 1 )+kpy 2 z 1 (x 1 x 3 )+kqy 1 (x 3 z 2 x 1 z 2 +x 1 z 3 x 2 z 3 ) z 1 (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) z 123 = z(z 1 z 2 )(x 3 (y 1 y 2 ) + x 1 (y 2 y 3 )+ x 2 (y 3 y 1 )) (x 1 x 2 )(pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) Answer is unique and independent of x and y. Consistency around the cube is satisfied!

Step 2: Homogenization Observed that x 3, y 3 and z 3 appear linearly in numerators and denominators of x 13 = y 1(x + yz 3 ) y 3 (x + yz 1 ) y 1 y 3 y 13 = pyy 3z 1 kyy 1 z 3 z(y 1 y 3 ) z 13 = y(z 3 z 1 ) y 1 y 3 x 23 = y 2(x + yz 3 ) y 3 (x + yz 2 ) y 2 y 3 y 23 = qyy 3z 2 kyy 2 z 3 z(y 2 y 3 ) z 23 = y(z 3 z 2 ) y 2 y 3

Substitute x 3 = h H, y 3 = g G, and z 3 = f F. Use constraints (from left face edges) z 1 y x 1 + x = 0, z 2 y x 2 + x = 0 z 3 y x 3 + x = 0 Solve for x 3 = z 3 y + x (since x 3 appears linearly). Thus, x 3 = fy+f x F, y 3 = g G, and z 3 = f F.

Substitute x 3, y 3, z 3 into x 13, y 13, z 13 : x 13 = F gx F Gxy 1 fgyy 1 + F gyz 1 F (g Gy 1 ) y 13 = y(fgky 1 F gpz 1 ) F (g Gy 1 )z z 13 = Gy(F z 1 f) F (g Gy 1 ) Require that numerators and denominators are linear in f, F, g, and G. That forces G = F. Hence, x 3 = fy+f x F, y 3 = g F, and z 3 = f F.

Compute Hence, x 3 = fy + F x F y 3 = g F y 13 = g 1 F 1 z 3 = f F z 13 = f 1 F 1 x 13 = f 1y 1 + F 1 x 1 F 1 x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 y 13 = y(fky 1 gpz 1 ) (g F y 1 )z = g 1 F 1 z 13 = y( f + F z 1) g F y 1 = f 1 F 1

Note that x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 is automaticlly satisfied as a result of the relation x 3 = z 3 y + x. Write in matrix form: f 1 y 0 yz 1 ψ 1 = g 1 = t kyy 1 pyz 1 0 z z 0 1 y 1 F 1 f g F = L ψ Repeat the same steps for x 23, y 23, z 23 to obtain

ψ 2 = f 2 g 2 F 2 = t y 0 yz 2 kyy 2 qyz 2 0 z z 0 1 y 2 f g F = M ψ Therefore, y 0 yz 1 L = tl c = t kyy 1 pyz 1 0 z z 0 1 y 1 y 0 yz 2 M = sm c = s kyy 2 qyz 2 0 z z 0 1 y 2

Step 3: Determine t and s Substitute L = t L c, M = s M c into L 2 M M 1 L = 0 t 2 s (L c ) 2 M c s 1 t (M c ) 1 L c = 0 Solve the equation from the (2-1)-element: t 2t s s 1 = y 1 y 2. Thus, t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = 3 z y 2 y 1 z 1 and s = 3 z y 2 y 2 z 2.

Example 3: Lattice due to Hietarinta (2011) x 1 z y 1 x = 0 x 2 z y 2 x = 0 z 12 y x 1 ( px1 qx ) 2 = 0 x z 1 z 2 Note: System has two single-edge equations and one full-face equation. Lax pair: L = t yz x k x kx px 1 z yzz 1 x x 1 z z 1 xz 1 z 0 zz 1

and M = s yz x k x kx qx 2 z yzz 2 x x 2 z z 2 xz 2, z 0 zz 2 where t = s = 1 z, or t = 1 z 1, s = 1 z 2, or t = 3 x x 1 z 2 z 1, s = 3 x x 2 z 2 z 2. Here, t 2 t s s 1 = z 1 z 2.

Example 4: Discrete Boussinesq System (Tongas and Nijhoff 2005) z 1 xx 1 + y = 0 z 2 xx 2 + y = 0 (x 2 x 1 )(z xx 12 + y 12 ) p + q = 0 Lax pair: L = t x 1 1 0 y 1 0 1 p k xy 1 + x 1 z z x

x 2 1 0 M = s y 2 0 1 q k xy 2 + x 2 z z x with t = s = 1, or t = 1 3 p k and s = 1 Note: x 3 = f F, y 3 = g F, and ψ = 3 q k. f F, and t 2 t g s s 1 = 1.

Example 5: System of pkdv Lattices (Xenitidis and Mikhailov 2009) (x x 12 )(y 1 y 2 ) p 2 + q 2 = 0 (y y 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: 0 0 tx t(p 2 k 2 xy 1 ) 0 0 t ty L = 1 T y T (p 2 k 2 x 1 y) 0 0 T T x 1 0 0

M = 0 0 sx s(q 2 k 2 xy 2 ) 0 0 s sy 2 Sy S(q 2 k 2 x 2 y) 0 0 S Sx 2 0 0 with t = s = T = S = 1, or t T = 1 DetLc = 1 p k and s S = 1 DetMc = 1 q k. Note: t 2 T or T 2 T S s 1 = 1 and T 2 t s S 1 = 1, S S 1 = 1, with T = t T, S = s S. Here, x 3 = f F, y 3 = g G, and ψ = [f F g G]T.

Example 6: Discrete NLS System (Xenitidis and Mikhailov 2009) y 1 y 2 y ( (x 1 x 2 )y + p q ) = 0 ( x 1 x 2 + x 12 (x1 x 2 )y + p q ) = 0 Lax pair: L = t 1 x 1 y k p yx 1 M = s 1 x 2 y k q yx 2

with t = s = 1, or t= 1 DetLc = 1 α k and s= 1 β k. Note: x 3 = f F, ψ = f F, and t 2 t s s 1 = 1.

Example 7: Schwarzian Boussinesq Lattice (Nijhoff 1999) z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax pair: L = t y 0 yz 1 pyz 1 0 z z 0 1 y 1 kyy 1

M = s y 0 yz 2 pyz 2 0 z z 0 1 y 2 kyy 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = z 3 y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Note: x 3 = fy+f x F, y 3 = g F, z 3 = f F, ψ = f g F, and t 2 t s s 1 = y 1 y 2.

Example 8: Toda modified Boussinesq System (Nijhoff 1992) y 12 (p q + x 2 x 1 ) (p 1)y 2 + (q 1)y 1 = 0 y 1 y 2 (p q z 2 + z 1 ) (p 1)yy 2 + (q 1)yy 1 = 0 y(p + q z x 12 )(p q + x 2 x 1 ) (p 2 + p + 1)y 1 + (q 2 + q + 1)y 2 = 0 Lax pair: 1+k+k k + p z 2 y L=t 0 p 1 (1 k)y 1 1 0 p k x 1 k 2 y y 1 p 2 (y 1 y) ky(x 1 z)+yzx 1 y p(y 1+yx 1 +yz) y

1+k+k k + q z 2 y M =s 0 q 1 (1 k)y 2 1 0 q k x 2 k 2 y y 2 q 2 (y 2 y) ky(x 2 z)+yzx 2 y q(y 2+yx 2 +yz) y with t = s = 1, or t = 3 y1 y and s = 3 y2 f Note: x 3 = f F, y 3 = g F, ψ = g F y. Here, t 2 t s s 1 = 1.

Software Demonstration

Conclusions and Future Work Mathematica code works for scalar P Es in 2D defined on quad-graphs (quadrilateral faces). Mathematica code has been extended to systems of P Es in 2D defined on quad-graphs. Code can be used to test (i) consistency around the cube and compute or test (ii) Lax pairs. Consistency around cube = P E has Lax pair. P E has Lax pair consistency around cube. Indeed, there are P Es with a Lax pair that are not consistent around the cube. Example: discrete sine-gordon equation.

Avoid the determinant method to avoid square roots! Factorization plays an essential role! Hard cases: Q4 equation (elliptic curves, Weierstraß functions) (Nijhoff 2001) and Q5 Future Work: Extension to more complicated systems of P Es. P Es in 3D: Lax pair will be expressed in terms of tensors. Consistency around a hypercube. Examples: discrete Kadomtsev-Petviashvili (KP) equations.

Thank You

Additional Examples Example 9: (H1) Equation (ABS classification) (x x 12 )(x 1 x 2 ) + q p = 0 Lax pair: L = t x p k xx 1 1 x 1 M = s x q k xx 2 1 x 2 with t = s = 1 or t = 1 k p and s = 1 k q Note: t 2 s t s 1 = 1.

Example 10: (H2) Equation (ABS 2003) (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 Lax pair: L = t p k + x p2 k 2 + (p k)(x + x 1 ) xx 1 1 (p k + x 1 ) M = s with t = Note: t 2 t q k + x q2 k 2 + (q k)(x + x 2 ) xx 2 1 (q k + x 2 ) 1 and s = 1 2(k p)(p+x+x1 ) 2(k q)(q+x+x2 ) s s 1 = p+x+x 1 q+x+x 2.

Example 11: (H3) Equation (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0 Lax pair: L = t kx ( δ(p 2 k 2 ) ) + pxx 1 p kx 1 M = s kx ( δ(q 2 k 2 ) ) + qxx 2 q kx 2 with t = Note: t 2 t 1 and s = 1 (p 2 k 2 )(δp+xx 1 ) (q 2 k 2 )(δq+xx 2 ) s s 1 = δp+xx 1 δq+xx 2.

Example 12: (H3) Equation (δ = 0) (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) = 0 Lax pair: L = t kx pxx 1 p kx 1 M = s kx qxx 2 q kx 2 with t = s = 1 x or t = 1 x 1 and s = 1 x 2 Note: t 2 s t s 1 = x x 1 x x 2 = x 1 x 2.

Example 13: (Q1) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Lax pair: L = t (p k)x 1 + kx p ( δ 2 ) k(p k) + xx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx q ( δ 2 ) k(q k) + xx 2 q ( ) (q k)x + kx 2 1 with t = δp±(x x 1 ) and s = 1 δq±(x x 2 ), 1 or t = k(p k)((δp+x x 1 )(δp x+x 1 )) and s = 1 k(q k)((δq+x x 2 )(δq x+x 2 )) Note: t 2 t s s 1 = q (δp+(x x 1 ))(δp (x x 1 )) p(δq+(x x 2 ))(δq (x x 2 )).

Example 14: (Q1) Equation (δ = 0) (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 ) = 0 which is the cross-ratio equation (x x 1 )(x 12 x 2 ) (x 1 x 12 )(x 2 x) = p q Lax pair: L = t (p k)x 1 + kx pxx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx qxx 2 q ( ) (q k)x + kx 2

Here, t 2 t or t = s s 1 = q(x x 1) 2 p(x x 2. So, t = 1 ) 2 x x 1 and s = 1 x x 2 1 and s = 1. k(k p)(x x1 ) k(k q)(x x2 )

Example 15: (Q2) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Lax pair: (k p)(kp x 1 )+kx L=t p ( k(k p)(k 2 kp+p 2 ) x x 1 )+xx 1 p ( ) (k p)(kp x)+kx 1 (k q)(kq x 2 )+kx M =s q ( k(k q)(k 2 kq+q 2 ) x x 2 )+xx 2 q ( ) (k q)(kq x)+kx 2

with t = 1 k(k p)((x x 1 ) 2 2p 2 (x+x 1 )+p 4 ) and s = 1 k(k q)((x x 2 ) 2 2q 2 (x+x 2 )+q 4 ) Note: t 2 t s = q ( (x x1 ) 2 2p 2 (x + x 1 ) + p 4) s 1 p ( (x x 2 ) 2 2q 2 (x + x 2 ) + q 4) = p ( (X + X 1 ) 2 p 2) ( (X X 1 ) 2 p 2) q ( (X + X 2 ) 2 q 2) ( (X X 2 ) 2 q 2) with x = X 2, and, consequently, x 1 = X 2 1, x 2 = X 2 2.

Example 16: (Q3) Equation (ABS 2003) (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0 Lax pair: 4kp ( p(k 2 1)x+(p 2 k 2 ) )x 1 L=t (p 2 1)(δ 2 k 2 δ 2 k 4 δ 2 p 2 +δ 2 k 2 p 2 4k 2 pxx 1 ) 4k 2 p(p 2 1) 4kp ( p(k 2 1)x 1 +(p 2 k 2 )x ) 4kq ( q(k 2 1)x+(q 2 k 2 ) )x 2 M=s (q 2 1)(δ 2 k 2 δ 2 k 4 δ 2 q 2 +δ 2 k 2 q 2 4k 2 qxx 2 ) 4k 2 q(q 2 1) 4kq ( q(k 2 1)x 2 +(q 2 k 2 )x )

with t= 1 2k p(k 2 1)(k 2 p 2 )(4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2 ) and s= 2k 1 q(k 2 1)(k 2 q 2 )(4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2 ).

Note: t 2 t s s 1 = q(q2 1) ( 4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x x 1 ) 2 4p(p 1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x x 2 ) 2 4q(q 1) 2 xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x+x 1 ) 2 4p(p+1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x+x 2 ) 2 4q(q+1) 2 xx 2 +δ 2 (1 q 2 ) 2)

where 4p 2 (x 2 +x 2 1) 4p(1+p 2 )xx 1 +δ 2 (1 p 2 ) 2 = δ 2 (p e X+X 1 )(p e (X+X1) )(p e X X 1 )(p e (X X1) ) = δ 2 (p cosh(x + X 1 )+sinh(x + X 1 )) (p cosh(x + X 1 ) sinh(x + X 1 )) (p cosh(x X 1 )+sinh(x X 1 )) (p cosh(x X 1 ) sinh(x X 1 )) with x = δ cosh(x), and, consequently, x 1 = δ cosh(x 1 ), x 2 = δ cosh(x 2 ).

Example 17: (Q3) Equation (δ) = 0 (ABS 2003) (q 2 p 2 )(xx 12 + x 1 x 2 ) + q(p 2 1)(xx 1 + x 2 x 12 ) p(q 2 1)(xx 2 + x 1 x 12 ) = 0 Lax pair: L=t (p2 k 2 )x 1 +p(k 2 1)x k(p 2 1)xx 1 (p 2 1)k ( (p 2 k 2 )x+p(k 2 ) 1)x 1 M =s (q2 k 2 )x 2 +q(k 2 1)x k(q 2 1)xx 2 (q 2 1)k ( (q 2 k 2 )x+q(k 2 ) 1)x 2

with t = 1 px x 1 and s = 1 qx x 2 or t = 1 px 1 x and s = 1 qx 2 x or t = 1 (k 2 1)(p 2 k 2 )(px x 1 )(px 1 x) and s = 1. (k 2 1)(q 2 k 2 )(qx x 2 )(qx 2 x) Note: t 2 t s s 1 = (q2 1)(px x 1 )(px 1 x) (p 2 1)(qx x 2 )(qx 2 x).

Example 18: (α, β)-equation (Quispel 1983) ( (p α)x (p+β)x1 ) ( (p β)x2 (p+α)x 12 ) ( (q α)x (q+β)x 2 ) ( (q β)x1 (q+α)x 12 ) =0 Lax pair: L=t (p α)(p β)x+(k2 p 2 )x 1 (k α)(k β)xx 1 (k+α)(k+β) ( (p+α)(p+β)x 1 +(k 2 p 2 )x ) M =s (q α)(q β)x+(k2 q 2 )x 2 (k α)(k β)xx 2 (k+α)(k+β) ( (q+α)(q+β)x 2 +(k 2 q 2 )x )

with t = 1 (α p)x+(β+p)x 1 ) and s = 1 (α q)x+(β+q)x 2 ) or t = or t = 1 (β p)x+(α+p)x 1 ) and s = 1 (β q)x+(α+q)x 2 ) 1 (p 2 k 2 )((β p)x+(α+p)x 1)((α p)x+(β+p)x 1) and s = Note: t 2 t 1 (q 2 k 2 )((β q)x+(α+q)x 2)((α q)x+(β+q)x 2) s s 1 = ( (β p)x+(α+p)x 1)((α p)x+(β+p)x 1) ((β q)x+(α+q)x 2)((α q)x+(β+q)x 2).

Example 19: (A1) Equation (ABS 2003) p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 (Q1) if x 1 x 1 and x 2 x 2 Lax pair: L = t (k p)x 1 + kx p ( δ 2 ) k(k p) + xx 1 p ( ) (k p)x + kx 1 M = s (k q)x 2 + kx q ( δ 2 ) k(k q) + xx 2 q ( ) (k q)x + kx 2

with t = 1 k(k p)((δp+x+x 1 )(δp x x 1 )) and s = 1 k(k q)((δq+x+x 2 )(δq x x 2 )) Note: t 2 t s s 1 = q (δp+(x+x 1 ))(δp (x+x 1 )) p(δq+(x+x 2 ))(δq (x+x 2 )). Question: Rational choice for t and s?

Example 20: (A2) Equation (ABS 2003) (q 2 p 2 )(xx 1 x 2 x 12 + 1) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0 (Q3) with δ = 0 via Möbius transformation: x x, x 1 1 x 1, x 2 1 x 2, x 12 x 12, p p, q q Lax pair: k(p L=t 2 1)x ( p 2 k 2 +p(k 2 ) 1)xx 1 p(k 2 1)+(p 2 k 2 )xx 1 k(p 2 1)x 1 k(q M =s 2 1)x ( q 2 k 2 +q(k 2 ) 1)xx 2 q(k 2 1)+(q 2 k 2 )xx 2 k(q 2 1)x 2

with t = and s = 1 (k 2 1)(k 2 p 2 )(p xx 1 )(pxx 1 1) 1 (k 2 1)(k 2 q 2 )(q xx 2 )(qxx 2 1) Note: t 2 t s s 1 = (q2 1)(p xx 1 )(pxx 1 1) (p 2 1)(q xx 2 )(qxx 2 1). Question: Rational choice for t and s?

Example 21: Discrete sine-gordon Equation xx 1 x 2 x 12 pq(xx 12 x 1 x 2 ) 1 = 0 (H3) with δ = 0 via extended Möbius transformation: x x, x 1 x 1, x 2 1 x 2, x 12 1 x 12, p 1 p, q q Discrete sine-gordon equation is NOT consistent around the cube, but has a Lax pair! Lax pair: L = p kx 1 M = k x px 1 x qx 2 x 1 kx x 2 k q