ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 101 College Physics I Course Outline

Similar documents
ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline

ESSEX COUNTY COLLEGE Biology & Chemistry Division CHM 100 Introduction to Chemistry Course Outline

ESSEX COUNTY COLLEGE Biology & Chemistry Division CHM 101 College Chemistry I Course Outline

ESSEX COUNTY COLLEGE Division of Biology & Chemistry CHM 104 General Chemistry II Course Outline

ESSEX COUNTY COLLEGE Division of Biology & Chemistry CHM 103 General Chemistry I Course Outline

ESSEX COUNTY COLLEGE Biology & Chemistry Division CHM 102 College Chemistry II Course Outline

ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

Upon successful completion of this course, students should be competent to perform the following tasks:

Upon successful completion of this course, students should be competent to perform the following tasks:

FENG CHIA UNIVERSITY

COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR. GENERAL PHYSICS I PHS Credit Hours

EASTERN ARIZONA COLLEGE Physics with Calculus I

COURSE OUTLINE General Physics I

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010

AP Physics C : Mechanics Course Syllabus Instructor: Mr. Ronald J. Maniglia

Modesto Junior College Course Outline of Record PHYS 142

Modesto Junior College Course Outline of Record PHYS 101

AP Physics C Liberty High School, Hillsboro, OR (PCC PHY 211 General Physics (Calculus))

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010

EASTERN ARIZONA COLLEGE General Physics I

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT

AP PHYSICS (B) SYLLABUS. Text: Physics, Sixth Edition by Cutnell and Johnson ISBN , Wiley and Sons, 2004 COURSE OVERVIEW

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE

AP Physics B Syllabus

Alabama Department of Postsecondary Education

AP Physics 1. Course Overview

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

Physics Course Syllabus CHS Science Department

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

Alabama Department of Postsecondary Education

AP Physics Syllabus Course Overview. Text: Physics by Giancoli, 5th edition Course Outline

AP Physics C: Mechanics: Syllabus 2

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

Engineering Statics and Dynamics PHYS 170 University Studies Program. Course Outline

Northwestern Connecticut Community College Course Syllabus

Miami-Dade Community College PHY 2053 College Physics I

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Instructor(s)/Author(s): Jeanne Bonner

PHYSICS 206, Spring 2019

Course Number Course Title Credits PHY 102 College Physics II 4. Co- or Pre-requisite. Prerequisite: PHY 101

Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department:

AP Physics B Syllabus

AP Physics C Syllabus

Physics C: Mechanics

Bergen Community College Division of Mathematics, Science and Technology Department of Physical Sciences Course Syllabus PHY-186 General Physics I

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE

SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments

AP PHYSICS C SYLLABUS. Paul A. Tipler and Gene P. Mosca. Physics for Scientists and Engineers, 6 th. Course Description

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS III MATH 2110

Introductory Physics

MASTER SYLLABUS

Physics 141 Course Information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS

Physics 18, Introductory Physics I for Biological Sciences Spring 2010

HS AP Physics 1 Science

Physics 1. and graphical representations. Express the motion of an object using narrative, mathematical,

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE

SC11 The course covers Newtonian mechanics in depth and provides instruction in

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS III MATH 2110

Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University

Physics 141 Course Information

AP Physics Curriculum Guide Scranton School District Scranton, PA

AP Physics 1 Syllabus

Course Name: AP Physics C Mechanics

Montgomery County Community College PHY 115 Technical Physics 4-3-3

EXPERIENCE COLLEGE BEFORE COLLEGE

Course Syllabus Chemistry 111 Introductory Chemistry I

Curricular Requirements

COURSE OUTLINE. Course Number Course Title Credits MAT251 Calculus III 4

MASTER SYLLABUS

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110

Miami-Dade Community College. PHY 1025 Basic Physics. This course may be used to satisfy one of the Natural Science requirements.

Wilson Area School District Planned Course Guide

AP Goal 1. Physics knowledge

Course #: SC-81 Grade Level: Prerequisites: Algebra with Geometry recommended # of Credits: 1

ITT Technical Institute. PH2530 Physics Onsite Course SYLLABUS

STUDENT INFORMATION PLAN (SIP) DEVELOPMENTAL MATHEMATICS MATH 0310 BEGINNING ALGEBRA - TDCJ

Physics 105 Spring 2017

AP Physics 1 Syllabus

AP R Physics C Mechanics Syllabus

A Correlation of Pearson Physics 2014

TEACHER CERTIFICATION STUDY GUIDE UNDERSTANDING AND SKILL IN PHYSICS

Bergen Community College Division of Math, Science and Technology Department of Physical Sciences. Course Syllabus PHY 294 Engineering Mechanics

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110

PHYS100 General Physics - Mechanics and Thermodynamics Fall

Warren County Schools PHYSICS PACING GUIDE (SEMESTER)

Course Outline of Record Los Medanos College 2700 East Leland Road Pittsburg CA Course Title: General College Physics Calculus Supplement I

San José State University Aerospace Engineering Department AE138: Vector Based Dynamics for Aerospace Applications Fall 2018

PS 150 Physics I for Engineers Embry-Riddle Aeronautical University Fall 2018

School District of Springfield Township

Iona Prep Course Syllabus

Montgomery County Community College PHY 151 Principles of Physics I (Calculus-based) 4-3-3

Course syllabus Engineering Mechanics - Dynamics

Ackroyd, Anderson, Berg, and Martin: Physics (Alberta Edition); Pearson. 38 Classes (assuming that we can have one early morning class per week)

Co-requisite: University Physics Lab I (PHYS 3013) Requisite: Calculus (MATH 3051 or equivalent)

JEFFERSON COLLEGE COURSE SYLLABUS. MTH 201 CALCULUS III 5 Credit Hours. Prepared by: John M Johny August 2012

Transcription:

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 101 College Physics I Course Outline Course Number & Name: PHY 101 College Physics I Credit Hours: 4.0 Contact Hours: 6.0 Lecture/Lab: 6.0 Other: N/A Prerequisites: Grade of C or better in MTH 100 or placement Co- requisites: MTH 113 or MTH 119 is recommended Concurrent Courses: None Course Outline Revision Date: Fall 2010 Course Description: This is the first half of a standard college physics sequence for technology, architecture, or biological science majors. Lecture and laboratory work is supported by individual assistance and computer activities. This course includes the study of kinematics, dynamics, momentum, energy, circular motion, universal gravitation, rotational motion, the structure of materials, and fluids. General Education Goals: The aggregate of the core courses required for any major at ECC have the following goals: 1. Written and Oral Communication: Students will communicate effectively in both speech and writing. 2. Quantitative Knowledge and Skills: Students will use appropriate mathematical and statistical concepts and operations to interpret data and to solve problems. 3. Scientific Knowledge and Reasoning: Students will use the scientific method of inquiry through the acquisition of scientific knowledge. 4. Technological Competency/Information Literacy: Students will use computer systems or other appropriate forms of technology to achieve educational and personal goals. 5. Society and Human Behavior: Students will use social science theories and concepts to analyze human behavior and social and political institutions and to act as responsible citizens. 6. Humanistic Perspective: Students will analyze works in the field of art, music, or theater; literature; and philosophy and/or religious studies; and will gain competence in the use of a foreign language. 7. Historical Perspective: Students will understand historical events and movements in World, Western, non- Western, or American societies and assess their subsequent significance. 8. Global and Cultural Awareness of Diversity: Students will understand the importance of global perspective and culturally diverse peoples. 9. Ethics: Students will understand ethical issues and situations. page 1

Course Goals: Upon successful completion of this course, students should be able to do the following: 1. translate quantifiable problems into mathematical terms and solve these problems using mathematical or statistical operations; (GEG 2, GEG 3) 2. use the scientific method to analyze a problem and draw conclusions from data and observations; (GEG 1, GEG 2, GEG 3) 3. use accurate terminology and notation in written and/or oral form to describe and explain the sequence of steps in the analysis of a particular physical phenomenon or problems in the area of mechanics; (GEG 1, GEG 2, GEG 3) and 4. perform laboratory experiments where natural world phenomena will be observed and measured. (GEG 2, GEG 3) Measurable Course Performance Objectives (MPOs): Upon successful completion of this course, students should specifically be able to do the following: 1. Translate quantifiable problems into mathematical terms and solve these problems using mathematical or statistical operations: 1.1 read and interpret physical information; 1.2 interpret and utilize graphical information; 1.3 use and convert units which measure length, time and mass between the U.S. Customary System and the International System; 1.4 identify the correct expressions necessary to solve problems; and 1.5 use basic algebraic and trigonometric mathematical reasoning as appropriate to solve problems 2. Use the scientific method to analyze a problem and draw conclusions from data and observations: 2.1 use data collected in the laboratory experiments to construct graphs and charts; 2.2 analyze data to show the relationship between measured values and dependent variables; 2.3 explain how the results verify, or in some cases, do not seem to verify the particular hypothesis tested in the experiment; and 2.4 communicate the results by writing laboratory reports using the computer 3. Use accurate terminology and notation in written and/or oral form to describe and explain the sequence of steps in the analysis of a particular physical phenomenon or problems in the area of mechanics: 3.1 fully describe motion and changes of motion, including projectile motion and circular motion, in terms of quantities which are measured or calculated; 3.2 draw free- body diagrams, analyze forces and calculate how the net force affects objects in terms of reactions, motion, and rotation; 3.3 analyze and calculate work and energy as well as their relationship, including conservation of energy; 3.4 analyze and calculate impulse and momentum as well as their relationship, including conservation of momentum; and 3.5 construct graphs and charts, interpret them, and utilize them to solve problems page 2

Measurable Course Performance Objectives (MPOs) (continued): 4. Perform laboratory experiments where natural world phenomena will be observed and measured: 4.1 use various appropriate equipment to measure and observe natural world phenomena; 4.2 work independently and also as member of a group; and 4.3 minimize errors in data collecting Methods of Instruction: Instruction will consist of a combination of lectures, class discussions, classroom demonstrations, laboratory experiments, board work, group work and individual study. Outcomes Assessment: Test and exam questions are blueprinted to course objectives. Data is collected and analyzed to determine the level of student performance on these assessment instruments in regards to meeting course objectives. The results of this data analysis are used to guide necessary pedagogical and/or curricular revisions. Course Requirements: All students are required to: 1. Complete all homework assignments before each class. 2. Take part in class discussion and do problems on the board when required. 3. Come prepared for each lab, having read the material ahead of time. 4. Perform all laboratory experiments, analyze data and write lab reports. 5. Complete all tests and exams in class or make up missed tests, if permitted. These include a minimum of 4 tests, 6 laboratory experiments and lab reports, and 1 cumulative Final Exam. Required Materials: Textbook: Physics, 4 th edition (ECC custom edition), by James S. Walker; published by Pearson/Prentice Hall Lab Manual: Lab Book for Physics 101 by A. Ruggiero from the ECC bookstore Scientific calculator and graph paper page 3

Methods of Evaluation: Final course grades will be computed as follows: Grading Components % of final course grade Homework and Quizzes 10 20% Students will be expected to analyze and solve problems that indicate the extent to which they master course objectives. 6 or more Laboratory Reports 10 20% Students will be expected to show that they have read assigned lab manual sections, can follow written procedures, measure and record data, perform calculations and write reports including all specified components. 4 or more Tests (dates specified by the instructor) 40 60% Tests show evidence of the extent to which students meet the course objectives, including but not limited to identifying and applying concepts, analyzing and solving problems, estimating and interpreting results and stating appropriate conclusions using correct terminology. Final Exam 15 30% The comprehensive final exam will examine the extent to which students have understood and synthesized all course content and achieved all course objectives. NOTE: The instructor will provide specific weights, which lie in the above- given ranges, for each of the grading components at the beginning of the semester. Academic Integrity: Dishonesty disrupts the search for truth that is inherent in the learning process and so devalues the purpose and the mission of the College. Academic dishonesty includes, but is not limited to, the following: plagiarism the failure to acknowledge another writer s words or ideas or to give proper credit to sources of information; cheating knowingly obtaining or giving unauthorized information on any test/exam or any other academic assignment; interference any interruption of the academic process that prevents others from the proper engagement in learning or teaching; and fraud any act or instance of willful deceit or trickery. Violations of academic integrity will be dealt with by imposing appropriate sanctions. Sanctions for acts of academic dishonesty could include the resubmission of an assignment, failure of the test/exam, failure in the course, probation, suspension from the College, and even expulsion from the College. page 4

Student Code of Conduct: All students are expected to conduct themselves as responsible and considerate adults who respect the rights of others. Disruptive behavior will not be tolerated. All students are also expected to attend and be on time all class meetings. No cell phones or similar electronic devices are permitted in class. Please refer to the Essex County College student handbook, Lifeline, for more specific information about the College s Code of Conduct and attendance requirements. page 5

Course Content Outline: based on the text Physics, 4 th edition, by James S. Walker & published by Pearson/Prentice Hall and the lab manual Lab Book for Physics 101 by A. Ruggiero from the ECC bookstore Class Meeting (80 minutes) Chapter/Section CHAPTER 1 INTRODUCTION TO PHYSICS 1 1.1 Physics and the laws of nature 1.2 Units of length mass and time 1.3 Dimensional analysis 1.4 Significant figures 2 1.5 Converting units 1.6 Order- of- magnitude calculations 1.7 Scalars and vectors 1.8 Problem solving in Physics 3 Lab #1 Measurements CHAPTER 2 ONE- DIMENSIONAL KINEMATICS 4 2.1 Position, distance and displacement 2.2 Average speed and velocity 2.3 Instantaneous velocity 5 2.4 Acceleration 2.5 Motion with constant acceleration 6 2.6 Applications of the equations of motion 7 2.7 Freely falling objects 8 Lab #2 Speed CHAPTER 3 VECTORS IN PHYSICS 9 3.1 Scalars versus vectors 3.2 The components of a vector 10 3.3 Adding and subtracting vectors 11 3.4 Unit vectors 3.5 Position, displacement, velocity and acceleration vectors 12 3.5 Position, displacement, velocity and acceleration vectors (continued) 3.6 Relative motion 13 Lab #3 Acceleration 14 Test #1 on Chapters 1, 2 & 3 CHAPTER 4 TWO- DIMENSIONAL KINEMATICS 15 4.1 Motion in two dimensions 4.2 Projectile motion: basic equations 16 4.3 Zero launch angle 4.4 General launch angle 17 4.5 Projectile motion: key characteristics page 6

Class Meeting (80 minutes) Chapter/Section CHAPTER 5 NEWTON S LAWS OF MOTION 18 5.1 Force and mass; Newton s 1 st Law of motion 5.2 Newton s 2 nd Law of motion 19 5.3 Newton s 2 nd Law of motion (continued) 20 5.4 Newton s 3 rd Law of motion 5.5 The vector nature of forces: forces in two- dimensions 21 5.5 The vector nature of forces: forces in two- dimensions (continued) 22 5.6 Weight 5.7 Normal forces 23 Lab #4 Net Force and Acceleration CHAPTER 6 APPLICATIONS OF NEWTON S LAWS 24 6.1 Frictional forces 25 6.2 Strings and springs 26 6.3 Translational equilibrium 6.4 Connected objects 27 6.5 Circular motion 28 Lab #5 Newton s Second Law 29 Test #2 on Chapters 4, 5 & 6 CHAPTER 7 WORK AND KINETIC ENERGY 30 7.1 Work done by a constant force 31 7.2 Kinetic energy and the work- kinetic energy theorem 32 7.3 Work done by a variable force 7.4 Power CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY 33 8.1 Conservative and nonconservative forces 8.2 Potential energy and the work done by a conservative force 34 8.3 Conservation of mechanical energy 35 8.4 Work done by nonconservative forces CHAPTER 9 LINEAR MOMENTUM AND COLLISIONS 36 9.1 Linear momentum 9.2 Momentum and Newton s 2 nd law 37 9.3 Impulse 9.4 Conservation of linear momentum 38 9.5 Inelastic collisions 9.6 Elastic collisions 39 Lab #6 Momentum 40 Test #3 on Chapters 7, 8 & 9 page 7

Class Meeting (80 minutes) Chapter/Section CHAPTER 10 ROTATIONAL KINEMATICS AND ENERGY 41 10.1 Angular position, velocity and acceleration 10.2 Rotational kinematics 42 10.2 Rotational kinematics (continued) 10.3 Connection between linear and rotational quantities CHAPTER 11 ROTATIONAL DYNAMICS AND STATIC EQUILIBRIUM 43 11.1 Torque 11.2 Torque and angular acceleration 44 11.3 Zero torque and static equilibrium 45 11.4 Center of mass and balance CHAPTER 12 GRAVITY 46 12.1 Newton s law of universal gravitation 12.2 Gravitational attraction of spherical objects 47 12.4 Gravitational potential energy 12.5 Energy conservation CHAPTER 15 FLUIDS 48 15.1 Density 15.2 Pressure 49 15.3 Static equilibrium in fluids: pressure and depth 15.4 Archimedes principle and buoyancy 50 15.5 Application of Archimedes principle 51 15.6 Fluid flow and continuity 15.7 Bernoulli s equation 52 15.8 Applications of Bernoulli s equation 53 Review of Chapters 10, 11, 12 & 15 54 Test #4 on Chapters 10, 11, 12 & 15 55 Review for Final Exam 56 Comprehensive Final Exam on all course material covered page 8