+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions.

Similar documents
Math 308 Exam II Practice Problems

ENGIN 211, Engineering Math. Laplace Transforms

Computing inverse Laplace Transforms.

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is,

Chapter DEs with Discontinuous Force Functions

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

3.5 Undetermined Coefficients

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

Name: Solutions Final Exam

MA 266 Review Topics - Exam # 2 (updated)

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method David Levermore Department of Mathematics University of Maryland

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method. David Levermore Department of Mathematics University of Maryland

Advanced Engineering Mathematics

A sufficient condition for the existence of the Fourier transform of f : R C is. f(t) dt <. f(t) = 0 otherwise. dt =

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

Laplace Transform. Chapter 4

Differential Equations

The Laplace Transform and the IVP (Sect. 6.2).

The Laplace Transform

Math 2C03 - Differential Equations. Slides shown in class - Winter Laplace Transforms. March 4, 5, 9, 11, 12, 16,

MATH 251 Examination II April 3, 2017 FORM A. Name: Student Number: Section:

Systems Analysis and Control

Laplace Transforms and use in Automatic Control

The Laplace transform

2.161 Signal Processing: Continuous and Discrete Fall 2008

Name: Solutions Exam 3

Applied Differential Equation. October 22, 2012

Honors Differential Equations

Lecture 29. Convolution Integrals and Their Applications

(an improper integral)

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

Faculty of Engineering, Mathematics and Science School of Mathematics

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Analysis III for D-BAUG, Fall 2017 Lecture 10

Introduction. f(t) dt. lim. f(t) dt = lim. 1 (1+t)1 p. dt; here p>0. h = (1+h)1 p 1 p. dt = (1+t) p 1 p

20.5. The Convolution Theorem. Introduction. Prerequisites. Learning Outcomes

LTI Systems (Continuous & Discrete) - Basics

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

Ordinary differential equations

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

The Laplace Transform

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

Laplace Theory Examples

Ordinary Differential Equations. Session 7

Introduction & Laplace Transforms Lectures 1 & 2

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

Math 216 Second Midterm 16 November, 2017

Week #9 : DEs with Non-Constant Coefficients, Laplace Resonance

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

Definition of the Laplace transform. 0 x(t)e st dt

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

Special Mathematics Laplace Transform

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

Differential Equations Class Notes

( ) f (k) = FT (R(x)) = R(k)

Math 341 Fall 2008 Friday December 12

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks:

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Ordinary Differential Equations

Linear Second Order ODEs

The Laplace Transform

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet).

MathQuest: Differential Equations

Chapter 6: The Laplace Transform 6.3 Step Functions and

The Laplace Transform

Solutions to Assignment 7

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Solutions of the Sample Problems for the Third In-Class Exam Math 246, Fall 2017, Professor David Levermore

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

CHAPTER 8 Laplace Transforms

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Time Response Analysis (Part II)

Math 307 Lecture 19. Laplace Transforms of Discontinuous Functions. W.R. Casper. Department of Mathematics University of Washington.

Dynamic System Response. Dynamic System Response K. Craig 1

EE102 Homework 2, 3, and 4 Solutions

Practice Problems For Test 3

Linear Filters. L[e iωt ] = 2π ĥ(ω)eiωt. Proof: Let L[e iωt ] = ẽ ω (t). Because L is time-invariant, we have that. L[e iω(t a) ] = ẽ ω (t a).

Section 6.4 DEs with Discontinuous Forcing Functions

1 Differential Equations

Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff

APPM 2360: Midterm exam 3 April 19, 2017

Math 216 Second Midterm 20 March, 2017

Math 266 Midterm Exam 2

Practice Problems For Test 3

Math 216 Second Midterm 19 March, 2018

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

REVIEW NOTES FOR MATH 266

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MA 201, Mathematics III, July-November 2016, Laplace Transform

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

Linear Systems Theory

Transcription:

COLOR LAYER red

LAPLACE TRANSFORM Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. +

Differentiation of Transforms. F (s) e st f(t) dt, F (s) e st (tf(t)) dt L(tf(t)) F (s), L (F (s)) tf(t). Example. Find inverse transforms of s s 2 (s 2 + β 2 ) 2, (s 2 + β 2 ) 2, (s 2 + β 2 ) 2. Differentiating L(sin βt) L(t sin βt) d ds Similarly, β s 2 +β 2, β s 2 + β 2 2βs (s 2 + β 2 ) 2. L(t cos βt) (s2 + β 2 ) 2s 2 (s 2 + β 2 ) 2 s2 β 2 (s 2 + β 2 ) 2. + 2

Hence, L(t cos βt β sin βt) s2 β 2 (s 2 + β 2 ) 2 s 2 + β 2 Similarly, 2β 2 (s 2 + β 2 ) 2. L(t cos βt + β sin βt) 2s 2 (s 2 + β 2 ) 2. Integration of Transforms. If lim t + f(t)/t exists, then ( ) f(t) L F (σ) dσ t s ( ) L F (σ) dσ f(t), s t because ] F (σ) dσ s s e σt f(t) dt dσ s f(t)e st t ] e σt f(t) dσ dt ( f(t) dt L t ). + 3

Note: If G(s) s F (σ) dσ, then F (s) G (s). Example. L ( ln( a 2 /s 2 ) ). First, find F (s) with G(s) s F (σ) dσ. Put G(s) ln( a 2 /s 2 ). F (s) G (s) d ( ) ds ln a2 s 2 L (ln ( 2a2 s(s 2 a 2 ) 2 s s a s + a f(t) L (F ) 2 e at e at a2 s 2 2(cosh at ). )) f(t) t 2( cosh at). t + 4

CONVOLUTION. L(fg) L(f)L(g), L (F (s)g(s)) f(t)g(t), but there is a relation between them, which is called convolution: if H(s) F (s)g(s), h(t) (f g)(t) Example. H(s) h(t) 2 cos t sin t 2 t t t f(τ)g(t τ) dτ. 2s (s 2 +) 2 2 s s 2 + cos τ sin(t τ) dτ (sin t + sin(2τ t)) dτ s 2 + τ sin t 2 cos(2τ t) ] t t sin t. Example. H(s) L ( s ), L ( s(s 2 +ω 2 ) s 2 + ω 2 ) ω sin ωt. + 5

By convolution, h(t) t ω sin ωt sin ωτ dτ ω ] t ω 2 cos ωτ ω 2 cos ωt. ω2 Proof of convolution: By 2nd shift, e st G(s) L(g(t τ)u(t τ)) e st g(t τ)u(t τ) dt τ e st g(t τ) dt F (s)g(s) e sτ f(τ)g(s) dτ f(τ) e st g(t τ) dt dτ. τ Changing the order of integration, F (s)g(s) t e st f(τ)g(t τ) dτ dt e st (f g)(t) dt L(f g). + 6

Differential Equation: y + ay + by r(t), y() y (), Y (s) R(s)Q(s), y(t) r(t) q(t), q(t) L (Q), where Q(s) /(s 2 + as + b) is the transfer function. y(t) Example. t q(t τ)r(τ) dτ. y + y sin 3t, y() y (). Now Q(s) /(s 2 + ), q(t) sin t. y(t) r(t) q(t) y(t) t 2 t sin 3τ sin(t τ) dτ (cos(t 4τ) cos(t + 2τ)) dτ 3 8 sin t sin 3t. 8 + 7

Integral Equations. Integral equations which are in a convolution form can be solved very easily: y(t) f(t) + (y g)(t) Y (s) F (s) + Y (s)g(s) Y (s) F (s) G(s). Example: y(t) e t 2 t y(τ) cos(t τ) dτ. This is in convolution form y e t 2y cos t Y (s) s 2Y (s) s + s 2 + Y (s) s2 + (s + ) 3 s + 2 (s + ) 2 + 2 (s + ) 3 y(t) ( t) 2 e t. + 8

Revision of Partial Fractions. Solutions of subsidiary equation appear as Y (s) F (s) G(s), deg(f ) < deg(g), where F, G have real coefficients, and it is necessary to expand the rational function as partial fractions. There are four cases commonly occurring, where G(s) has a factor: Simple factor s a; Repeated factor (s a) m ; Irreducible quadratic (s α) 2 + β 2 ; + 9

Simple factor: Y (s) F (s) A has partial fraction G(s) y(t) has a term Ae at. s a. Example. Y (s) 7s s 3 7s + 6 A s + A 2 s 2 + A 3 s + 3 7s A (s 2)(+3) + A 2 (s )(s + 3) +A 3 (s )(s 2). s : 4A 8, A 2. s 2 : 5A 2 5, A 2 3. s 3 : 2A 3 2, A 3. y(t) L (Y ) 2e t 3e 2t + e 3t +

Example 2. Repeated factor y + 4y + 4y 2e 2t, y() 3, y (). s 2 Y 3s + + 4(sY 3) + 4Y 2 s + 2, (s 2 +4s+4)Y 3s+2+ 2 s + 2 3s2 + 8s + 6, s + 2 Y (s) F (s) G(s) 3s2 + 8s + 6 (s + 2) 3 A 3 (s + 2) 3 + A 2 (s + 2) 2 + A s + 2. 3s 2 + 8s + 6 A 3 + A 2 (s + 2) + A (s + 2) 2. cft of s 2 : A 3 cft of s : A 2 + 4A 8, A 2 4 const : A 3 + 2A 2 + 4A 6, A 3 2 y(t) 3e 2t 4te 2t + t 2 e 2t. +

Irreducible quadratic factor (s α) 2 + β 2 Y (s) has a partial fraction A s + A 2 (s α) 2 + β 2 A (s α) + αa + A 2 (s α) 2 + β 2 A s α (s α) 2 + β 2 + αa + A 2 (s α) 2 + β 2 and the inverse transform is y(t) e αt ( A cos βt + αa + A 2 β sin βt ). + 2

Example: y + 4y sinh t, y() y (), s 2 Y sy() y () + 4Y s 2, Y (s) (s 2 + 4)(s )(s + ) A s + A 2 s 2 + 4 + B s + (A s + A 2 )(s )(s + ) +B(s + )(s 2 + 4) +C(s )(s 2 + 4) s : B, B /. s : C, C /. C s + cft s 3 : A + B + C, A. const : A 2 2 + 4B 4C, A 2 2/. y(t) sin 2t + (et e t ) + 3

Systems of DEs. Example. ] y 3 y + 3 6 2 Taking the Laplace transform, sy y() AY + s + 2 s + 3 s + 3 ] ] Y s + 2 e 2t, y() 6 2 6 2 ] + ] ] ] Y Y (s) Y 2 (s) s + 3 (s + 2) 2 (s + 4) s + 3 s + 3 + (s + 2)(s + 4) s + 3 s 2 ] s (s + 2) 2 (s + 4) 3s + 2 s 2 s (s + 2) 2 (s + 4) y (t), 3s + 2 (s + 2) 2 (s + 4) y 2(t). ] 6 2 ] ] ] + 4

Y (s) A (s + 2) 2 + B s + 2 + C s + 4 s 2 s A (s + 4) + B (s + 2)(s + 4) +C (s + 2) 2 s 2 : 4 2A, A 2. s 4 : 4C, C 5/2. cft s 2 : B + C, B 3/2. A 2 Y 2 (s) (s + 2) 2 + B 2 s + 2 + C 2 s + 4 3s + 2 A 2 (s + 4) + B 2 (s + 2)(s + 4) +C 2 (s + 2) 2 s 2 : 4 2A 2, A 2 2. s 4 : 4C 2, c 2 5/2. cft s 2 : B 2 + C 2, B 2 5/2. y (t) 2te 2t 3e 2t /2 + 5e 4t /2 y 2 (t) 2te 2t + 5e 2t /2 5e 4t /2. + 5

Example 2. Two masses on springs. y y ky + k(y 2 y ) 2 k(y 2 y ) ky 2, y () y 2 (), y () 3k, y 2 () 3k. Let Y L(y ), Y 2 L(y 2 ). s 2 Y s 3k ky + k(y 2 Y ) s 2 Y 2 s + 3k k(y 2 Y ) ky 2 (s 2 + 2k)Y ky 2 s + 3k ky + (s 2 + 2k)Y 2 s 3k. + 6

Solving for Y, Y 2, Y (s + 3k)(s 2 + 2k) + k(s 3k) (s 2 + 2k) 2 k 2 Y 2 (s2 + 2k)(s 3k) + k(s + 3k) (s 2 + 2k) 2 k 2 (s 2 + 2k) 2 k 2 (s 2 + 2k) k](s 2 + 2k) + k] (s 2 + k)(s 2 + 3k) Y Y 2 s s 2 + k + s s 2 + k 3k s 2 + 3k 3k s 2 + 3k y (t) cos kt + sin 3kt y 2 (t) cos kt sin 3kt + 7

Periodic Functions. f(t) defined for all t >, and has period p >, L(f) f(t + p) f(t) t >. p e st f dt + p + 3p 2p p e st f dt 2p e st f dt +... e sτ f(τ) dτ + + p p e s(τ+p) f(τ) dτ e s(τ+2p) f(τ) dτ +... + e sp + e 2sp +...] e ps p e sτ f(τ) dτ. p e sτ f(τ) dτ This is because in the integral (k+)p kp e st f dt, we can substitute t τ + kp to obtain p e s(τ+kp) f(τ +kp) dτ e kp because f(τ + kp) f(τ). p e sτ f(τ) dτ, + 8

Example. f(t) { if < t < π, if π < t < 2π, f(t + 2π) f(t). L(f) e 2πs e 2πs s ( π ( e πs ) 2 s( e 2πs ) e st dt + e πs s( + e πs ) s coth 2π π ( 2e πs + e 2πs) ( πs 2 )..e st dt ) + 9

Example 2. Halfwave Rectifier: f(t) { sin ωt if < t, π/ω, if π/ω < t < 2π/ω, f(t + 2π/ω) f(t). π/ω L(f) e 2πs/ω e st sin ωt dt. The integral is the imaginary part of π/ω and so e ( s+iω)t dt L(f) e ( s+iω)t ] π/ω s + iω s iω s 2 + ω 2( e sπ/ω ), ω( + e sπ/ω ) (s 2 + ω 2 )( e 2sπ/ω ) ω (s 2 + ω 2 )( e sπ/ω ). + 2

Example 3. Rectifier of sin ωt: f(t) sin ωt, t π ω, f(t + π ω ) f(t). L(f) e πs/ω π/ω e st sin ωt dt. π/ω e st e iωt dt π/ω e (s+iω)t dt e (s iω)t s iω π/ω e (s iω)π/ω s iω + e πs/ω s iω ( + e πs/ω )(s + iω) s 2 + ω 2. + 2

Since e st sin ωt is the imaginary part of e (s iωt), take the imaginary part of the integral and multiply by /( e πs/ω ) to obtain L(f) ω( + e πs/ω ) e πs/ω s 2 + ω 2 ω(e πs/2ω + e πs/2ω ) e πs/2ω e πs/2ω s 2 + ω 2 ω cosh(πs/2ω) s 2 + ω 2 sinh(πs/2ω). + 22