Temporal and spatial variations in radiation and energy fluxes across Lake Taihu

Similar documents
Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

Variability of Evaporation from Lake Taihu and its Response to Climate Change. GAO Yaqi YNCenter Weekly Video Conference

Estimating Evaporation : Principles, Assumptions and Myths. Raoul J. Granger, NWRI

GAMINGRE 8/1/ of 7

The Arctic Energy Budget

Climate Variability in South Asia

EVAPORATION GEOG 405. Tom Giambelluca

Introduction to Climate ~ Part I ~

UWM Field Station meteorological data

Characterization of the solar irradiation field for the Trentino region in the Alps

Energy partitioning of inland water bodies

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

Update on doctoral dissertation research: lake models application and comparison in Lake Taihu

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

The Ocean-Atmosphere System II: Oceanic Heat Budget

Related Improvements. A DFS Application. Mark A. Bourassa

Global Climates. Name Date

SURFACE ENERGY BUDGET OVER INLAND WATER

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Monday 7 October 2013, Class #15

BMKG Research on Air sea interaction modeling for YMC

Snow II: Snowmelt and energy balance

Radiation, Sensible Heat Flux and Evapotranspiration

A R C T E X Results of the Arctic Turbulence Experiments Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard

5. General Circulation Models

Dust storm variability over EGYPT By Fathy M ELashmawy Egyptian Meteorological Authority

Simulations of Lake Processes within a Regional Climate Model

Temperature Change. Heat (Q) Latent Heat. Latent Heat. Heat Fluxes Transfer of heat in/out of the ocean Flux = Quantity/(Area Time) Latent heat

Lecture 7: The Monash Simple Climate

Promoting Rainwater Harvesting in Caribbean Small Island Developing States Water Availability Mapping for Grenada Preliminary findings

Assessing the impact of Arctic sea ice variability on Greenland Ice Sheet surface mass and energy exchange

Interannual variability of top-ofatmosphere. CERES instruments

Bryan Butler. National Radio Astronomy Observatory. November 23, 1998

An Empirical Method for Estimating Global Solar Radiation over Egypt S. A. Khalil, A. M. Fathy

A meta-analysis of water vapor deuterium-excess in the mid-latitude atmospheric surface layer

Available online at ScienceDirect. Procedia Engineering 70 (2014 ) 23 30

Greenhouse Steady State Energy Balance Model

Coupling Climate to Clouds, Precipitation and Snow

2003 Water Year Wrap-Up and Look Ahead

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Faisal S. Syed, Shahbaz M.,Nadia R.,Siraj I. K., M. Adnan Abid, M. Ashfaq, F. Giorgi, J. Pal, X. Bi

Colorado s 2003 Moisture Outlook

5.0 WHAT IS THE FUTURE ( ) WEATHER EXPECTED TO BE?

Assimilation of satellite derived soil moisture for weather forecasting

APPLICATIONS OF DOWNSCALING: HYDROLOGY AND WATER RESOURCES EXAMPLES

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

SYSTEM BRIEF DAILY SUMMARY

Comparison of historical trends of pan evaporation and modeled lake evaporation in Lake Taihu catchment. Hu Cheng

2003 Moisture Outlook

Land Surface Processes and Their Impact in Weather Forecasting

Climatography of the United States No

Direct Normal Radiation from Global Radiation for Indian Stations

Communicating Climate Change Consequences for Land Use

( ) = 1005 J kg 1 K 1 ;

Three main areas of work:

Spatiotemporal variations of alpine climate, snow cover and phenology

Chapter 3- Energy Balance and Temperature

Evapotranspiration. Rabi H. Mohtar ABE 325

2016 Meteorology Summary

Climate Change and Arizona s Rangelands: Management Challenges and Opportunities

Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

What is the difference between Weather and Climate?

Future Weather in Toronto and the GTA

TILT, DAYLIGHT AND SEASONS WORKSHEET

Performance evaluation of an integrated open-path eddy covariance system in a cold desert environment

Glaciology HEAT BUDGET AND RADIATION

Land-cloud-climate Coupling on the Canadian Prairies

Local Meteorology. Changes In Geometry

UPPLEMENT A COMPARISON OF THE EARLY TWENTY-FIRST CENTURY DROUGHT IN THE UNITED STATES TO THE 1930S AND 1950S DROUGHT EPISODES

An intercomparison model study of Lake Valkea-Kotinen (in a framework of LakeMIP)

Experimental measurements and analysis of the indoor conditions in Italian museum storerooms: a study case

CAVE CLIMATE COMPARISON ACTIVITY BETWEEN THE SURFACE AND THE CAVERN

SYSTEM BRIEF DAILY SUMMARY

Evapotranspiration: Theory and Applications

The Cryosphere Radiative Effect in CESM. Justin Perket Mark Flanner CESM Polar Climate Working Group Meeting Wednesday June 19, 2013

Average temperature ( F) World Climate Zones. very cold all year with permanent ice and snow. very cold winters, cold summers, and little rain or snow

A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake

Convective-scale NWP for Singapore

Torben Königk Rossby Centre/ SMHI

Global climate predictions: forecast drift and bias adjustment issues

Influence of wind speeds on flux exchange across water-atmosphere interface under different stability conditions

Drought in Southeast Colorado

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown

Variability of Reference Evapotranspiration Across Nebraska

Spatial variations of CH 4 in surface air over Lake Taihu. Zhang Mi, Wang Shumin, Xu Jingzheng, Hu Cheng, Xiao Qitao

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

CWV Review London Weather Station Move

The Climate of Payne County

Monitoring daily evapotranspiration in the Alps exploiting Sentinel-2 and meteorological data

Climatography of the United States No

Climatography of the United States No

SOLAR POWER FORECASTING BASED ON NUMERICAL WEATHER PREDICTION, SATELLITE DATA, AND POWER MEASUREMENTS

The Climate of Kiowa County

Journal of Asian Scientific Research

Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES

Chapter 4 Water Vapor

Transcription:

Temporal and spatial variations in radiation and energy fluxes across Lake Taihu Wang Wei YNCenter Video Conference May 10, 2012

Outline 1. Motivation 2. Hypothesis 3. Methodology 4. Preliminary results 5. Discussion 6. Next steps

List of Symbols H: sensible heat flux, LE: latent heat flux, S: heat storage, β: Bowen ratio, λ: latent heat of vaporization, γ: psychrometric constant, C D : drag coefficient, C p : specific heat at constant pressure. T a : air temperature, T s : skin temperature, ΔT= T s T a, RH: relative humidity, U: wind speed, e a : vapor pressure, e s : saturation vapor pressure, Δe= e s e a, ρ v : water vapor density, ρ w : water density, h: water depth. UR: reflected short wave radiation, DR: incident radiation, ULR: upward long wave radiation, DLR: downward long wave radiation, R n : net radiation, α: albedo; ε: emissivity, σ: Stefan Boltzmann constant.

Abbreviation EC: Eddy Covariance MET: meteorological EBC: Energy Balance Closure NWP: Numerical Weather Prediction GCMs: Global Climate Models GMR: Geometric Mean Regression IRGA: Infrared Gas Analyzer

1. Motivation Lakes, ponds and impoundments cover >3% of Earth s continent (Downing et al., 2006), about 0.9% of China s land area (Ma et al., 2011); The domain averaged H was reduced, LE was enhanced with the inclusion of lakes (Bonan, 1995; Nagarajan et al., 2004); Accurate measurements of lake atmosphere exchanges are imperative for improving NWP and GCMs performance (Herderson Sellers, 1986); Existing models treated lake as a whole bulk, without considering the spatial variations in radiation and energy fluxes (Spence et al., 2011).

2. Hypothesis Variations in radiation and energy fluxes exist across Lake Taihu; Behaving different H and LE, lake and land contribution to local heat, moisture source may vary; Local climate changes can result from lake reclamation and lake side enclosure associated with anthropogenic activities.

3. Methodology

3.1 Experimental sites

Sites description Type Site Measurement Data coverage Location Elevation(m) land DS EC, MET gradient, Radiation,Soil Apr.15, 2011~now 120 26' E, 31 04' N 17.5 MLW EC, MET, Radiation,Tw Jun 13, 2010~now 120 13' E, 31 24' N 1.354 lake DPK EC, MET, Radiation,Tw Aug.17, 2011~now 119 56' E, 31 16' N 0.681 BFG1 EC, MET, Radiation,Tw Dec.15, 2011~now 120 24' E, 31 10' N 1.452 Research period: Apr. 16, 2011 to now

30min average data De-spike Daily mean ( 40 points) ρ v IRGA correction coefficient Bulk transfer coefficient Filling approach Gap filling MET data Radiation data Tw data Flux data LE correction Monthly mean Results β R n S Adjusting H, LE

3.2 Equations involved Energy balance equation Rn S H LE QB QF QP Energy balance closure H LE EBC 100% Rn S Heat storage in water S C w pw h h Tw2 dh2 Tw 1 dh1 h h h h t 2 2 1 Skin temperature 0 2 0 1 1 2 T s Bowen ratio H LE ULR (1 ) DLR 1 4 (Nordbo et al., 2011)

3.3 Bulk mass transfer approach H C C U( T T ) a a D s a aca LE CD U( es ea) (Binyamin et al., 2006)

H

LE

3.4 ρ v IRGA correction by ρ v RH through GMR vrh a virga b w w ( a b) aw vrh virga virga (GMR by Trujillo Ortiz and Hernandez Walls, 2010 )

3.5 Adjusting H and LE Lack of EBC results from several complicated reasons (Foken, 2006, 2008); Forcing closure can be done by assuming β is correctly measured by EC and available energy is representative of footprint (Twine et al., 2000) ; The objective is to get accurate H and LE.

4. Preliminary results

4.1 MET variables

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Annual DS 17.92 21.49 24.18 29.33 27.78 23.82 18.63 15.89 5.89 4.02 3.67 7.21 16.65 T a MLW 17.54 21.22 23.93 28.68 27.41 23.46 18.22 15.49 5.32 3.66 3.42 8.80 16.43 DPK 26.12 23.46 18.45 15.11 5.15 3.55 3.40 8.81 BFG1 4.87 3.86 3.54 8.94 DS 100.83 100.68 100.10 99.94 100.20 100.86 101.64 101.80 102.64 102.44 102.20 101.75 101.26 P a MLW 101.00 100.88 100.31 100.14 100.40 101.06 101.83 101.96 102.77 102.57 102.32 101.90 101.43 kpa DPK 100.76 101.19 101.95 102.10 102.94 102.74 102.46 102.03 BFG1 103.00 102.65 102.41 102.00 DS 58.78 62.75 79.36 71.21 75.30 67.29 64.93 70.78 61.31 65.77 68.39 71.87 68.14 RH MLW 56.60 61.77 77.23 73.25 75.88 68.11 66.62 72.09 63.07 65.01 66.43 68.42 67.87 % DPK 80.86 71.04 68.58 75.48 67.17 70.26 70.24 71.47 BFG1 67.67 71.03 73.61 75.35 DS 3.72 3.33 3.08 3.23 3.37 3.53 3.09 3.08 3.27 3.21 3.34 3.22 3.29 U MLW 3.27 2.85 2.68 2.45 2.52 2.58 2.14 0.91 1.33 2.23 2.36 2.16 2.29 m.s -1 DPK 4.34 4.22 3.98 3.99 3.35 3.31 3.82 4.29 BFG1 3.56 3.86 4.16 4.52

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Annual DS 19.89 23.06 24.71 29.93 28.46 26.20 19.07 15.50 5.99 4.87 5.19 9.09 17.66 T s MLW 18.56 22.40 24.80 29.61 28.66 24.75 19.30 16.08 6.38 4.50 4.67 9.57 17.44 DPK 27.56 25.00 19.65 16.12 6.59 4.71 4.70 9.54 BFG1 5.81 4.95 4.85 9.72 e s MLW 2.17 2.76 3.16 4.18 3.95 3.16 2.25 1.85 0.98 0.85 0.86 1.22 2.28 kpa DPK 3.71 3.22 2.30 1.85 0.98 0.86 0.86 1.22 BFG1 0.93 0.87 0.86 1.23 DS 1.97 1.70 0.53 0.59 0.67 2.39 0.44-0.39-0.05 0.87 1.52 1.88 1.01 ΔT MLW 1.02 1.18 0.87 0.94 1.25 1.29 1.08 0.59 1.06 0.84 1.24 0.77 1.01 DPK 1.43 1.54 1.20 1.01 1.44 1.16 1.29 0.73 BFG1 0.94 1.09 1.31 0.78 Δe MLW 1.00 1.19 0.87 1.32 1.19 1.17 0.85 0.53 0.39 0.32 0.32 0.44 0.80 kpa DPK 0.97 1.13 0.84 0.52 0.37 0.29 0.29 0.40 BFG1 0.33 0.29 0.26 0.36

4.2 Radiation components

UR W.m -2 DR W.m -2 Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Annual DS 43.74 36.73 25.50 37.24 30.48 31.76 24.46 19.00 21.71 16.82 15.52 22.49 27.12 MLW 13.24 11.67 8.70 10.15 10.45 10.14 8.53 6.36 7.94 5.66 5.03 7.43 8.78 DPK 9.92 13.69 11.16 7.74 10.76 7.54 7.22 9.34 BFG1 15.11 10.81 10.69 12.79 DS 216.78 191.99138.09 195.71 163.94 167.67 126.76 92.76 94.45 77.72 82.33 122.84 139.25 MLW 217.21 190.82142.02 186.00 160.41 169.22 125.48 94.09 94.89 77.27 81.17 121.59 138.35 DPK 131.49 167.15 133.49 90.36 97.19 78.07 82.78 119.19 BFG1 100.93 80.29 84.42 125.56 DS 418.25 437.07446.01 477.72 468.72 455.33 412.64 393.02 343.04 338.39340.00 366.79 408.08 ULR MLW 408.78 431.35446.14 475.56 469.62 445.41 413.29 395.55 344.46 335.71336.67 361.26 405.32 W.m -2 DPK 462.95 447.10 415.41 395.88 345.69 336.88336.90 361.22 BFG1 341.50 337.89337.56 362.06 DS 324.61 369.53413.39 434.08 430.85 391.12 353.12 338.23 280.08 299.70304.82 322.46 355.16 DLR MLW 344.41 381.44418.23 443.44 438.49 401.56 363.43 348.65 283.91 293.64299.97 320.52 361.47 W.m -2 DPK 437.62 407.29 369.36 353.99 292.13 300.83303.89 324.99 BFG1 281.15 296.46300.78 321.07

α R n (W.m -2 ) Month DS MLW DPK BFG1 DS MLW DPK BFG1 Apr 0.20 0.06 79.40 139.60 May 0.19 0.07 87.72 129.23 Jun 0.18 0.07 79.97 105.42 Jul 0.19 0.06 114.83 143.72 Aug 0.18 0.07 0.08 95.59 118.83 96.24 Sep 0.18 0.06 0.08 71.70 115.23 113.65 Oct 0.19 0.07 0.08 42.78 67.09 76.28 Nov 0.19 0.07 0.08 18.96 40.82 40.73 Dec 0.22 0.09 0.11 0.14 9.78 26.41 32.88 25.47 Jan 0.20 0.07 0.09 0.12 22.20 29.55 34.48 28.05 Feb 0.17 0.06 0.09 0.12 31.62 39.44 42.55 36.96 Mar 0.17 0.06 0.08 0.10 56.01 73.41 73.61 71.78 Annual 0.19 0.07 59.21 85.73

4.3 Energy fluxes

Heat storage

Bowen ratio

EBC

H adjusted

LE adjusted

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Annual DS 22.98 27.34 22.85 27.47 24.48 23.99 16.05 8.92 9.42 13.93 15.76 17.51 19.22 H MLW 7.75 10.62 8.53 9.96 16.53 16.46 9.91 7.56 2.13 6.25 9.28 6.15 9.26 W.m -2 DPK 16.40 18.59 8.68 6.00 13.11 7.95 10.50 4.39 BFG1 3.96 8.24 10.61 9.26 DS 50.58 54.61 51.45 77.16 66.28 47.48 30.97 14.67 10.78 15.48 21.04 28.68 39.10 LE MLW 114.78 119.50 83.66 116.88 117.05 117.30 69.93 48.45 35.15 24.71 29.78 45.00 76.85 W.m -2 DPK 118.81 118.25 84.53 50.68 38.49 28.90 29.01 37.51 BFG1 18.57 22.46 26.80 41.74 DS 80.06 87.47 79.97 114.83 95.28 71.70 42.78 18.96 10.51 22.30 31.62 45.57 58.42 R n MLW 139.05 129.23 105.42 143.72 118.83 115.23 67.09 41.31 27.44 29.60 39.44 73.82 85.85 W.m -2 DPK 96.24 113.65 76.28 40.73 32.88 34.48 42.55 73.61 BFG1 25.47 28.05 36.95 71.47 DS 5.84 5.52 5.67 10.20 4.43 0.23-4.25-4.62-9.69-6.93-5.18-0.63 0.05 S MLW 16.52-0.88 13.22 16.89-14.75-18.53-12.74-14.70-9.84-1.36 0.38 22.67-0.26 W.m -2 DPK -38.97-23.18-16.94-15.95-18.72-2.37 3.04 31.72 BFG1 2.94-2.65-0.45 20.47

H/(R n S)

LE/(R n S)

H/(R n -S) LE/(R n -S) DS MLW DPK BFG1 DS MLW DPK BFG1 Apr 0.31 0.06 0.69 0.94 May 0.33 0.08 0.67 0.92 Jun 0.31 0.09 0.69 0.91 Jul 0.26 0.08 0.74 0.92 Aug 0.27 0.12 0.12 0.73 0.88 0.88 Sep 0.34 0.12 0.14 0.66 0.88 0.86 Oct 0.34 0.12 0.09 0.66 0.88 0.91 Nov 0.38 0.14 0.11 0.62 0.86 0.89 Dec 0.47 0.06 0.25 0.18 0.53 0.94 0.75 0.82 Jan 0.47 0.20 0.22 0.27 0.53 0.80 0.78 0.73 Feb 0.43 0.24 0.27 0.28 0.57 0.76 0.73 0.72 Mar 0.38 0.12 0.10 0.18 0.62 0.88 0.90 0.82 Annual 0.33 0.11 0.67 0.89

Summary UR, DR, ULR, DLR peaked in Apr., Apr., Jul., Jul., reached the minimum in Feb., Jan., Jan., Dec. respectively; Equal DR, ULR and DLR among four sites; Annual mean UR_MLW 1/3*UR_DS [α_ds 3*α_MLW(0.07)], BFG1 with the highest UR and MLW reflected the lowest among lake sites; Annual mean R n _DS 69%*R n _MLW.

Little variations in energy fluxes over lake Taihu; At MLW, the footprint average LE doubled (97%) and H was halved (52%) as compared with DS; Land behaved the major local heat source especially in summer(>70%), lake evaporation contributed >70% of local atmospheric moisture source in winter; About 89% of lake available energy fueled the evaporation loss, 33% of land available energy was used to heating atmosphere; Lake reclamation and lake side enclosure can accelerate (even double) the warming drying trend.

5. Discussion The effect of lake land interaction (horizontal transport); Difference in energy fluxes between lake and land when atmospheric conditions vary (clear sky, overcast ); The lake land water cycle; Local warming drying effect of lake reclamation.

Measured (mm) Calculated (mm) DS 501.882 505.35 MLW 1094.74 993.25

(Ma et al., 2010)

6. Next steps Evaluating the uncertainty in H, LE calculation and bias propagating; Investigating the driven forces for UR and energy fluxes spatial variations; Comparison with findings published for lake; Assessing the local climate effect of lake reclamation and lakeside enclosure in China during the past half century.

Thank you! Suggestions and questions are welcome.