Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Similar documents
3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Supplementary information

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

SUPPORTING INFORMATION

Aluminum Siting in the ZSM-5 Framework by Combination of

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Supporting Information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Electronic Supplementary information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

Supporting Information

University of Groningen

Supporting Information

Supplemental Material

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Electronic Supplementary Information (ESI) for Chem. Commun.

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

Supporting Information

A Computational Model for the Dimerization of Allene: Supporting Information

China; University of Science and Technology, Nanjing , P R China.

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

A theoretical study on the thermodynamic parameters for some imidazolium crystals

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Supporting information on. Singlet Diradical Character from Experiment

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information

Supporting Information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supplementary Material

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Supporting Information

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Computational Material Science Part II

(1) 2. Thermochemical calculations [2,3]

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

SUPPLEMENTARY INFORMATION

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Which NICS Aromaticity Index for Planar π Rings is Best?

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Electronic Supplementary Information for:

Supporting Information For

Supporting Information. A rare three-coordinated zinc cluster-organic framework

Supporting Information

Dynamics of H-atom loss in adenine: Supplementary information

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Supporting Information

The Chemist Journal of the American Institute of Chemists

Supporting Information

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Supplementary Information

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

Supporting Information (Part 1) for

Supporting Information

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

Supporting Information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information

Supporting information

Supplementary Information:

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

Pyrogallol[4]arenes as frustrated organic solids

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß

Supporting Information

Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., Warszawa, Poland 2

Tuning the electron transport band gap of bovine serum. albumin by doping with Vb12

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Electrophilicity and Nucleophilicity of Commonly Used. Aldehydes

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ Том 51, 2 Март апрель С

Supporting Information Computational Part

Supporting Information

Supporting Information. The Structure of the Strongest Brønsted Acid: The Carborane Acid H(CHB 11 Cl 11 )

Diphosphene Photobehaviour

Transcription:

Supporting Information: Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer, Xiao Cheng Zeng * Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 Center for Computational Chemistry, University of Georgia, Athens, Georgia, 30602 Email: xczeng@phase2.unl.edu Part I. Isomer structures and their relative energies: CAl 5 +, CSi 5 2-, CBe 5, CP 5 3+, and CB 5. Part II. PpC contained structures CAl + 5, CSi 2-5, CBe 5, CP 3+ 5, CB 5, CSi 4 P - (Ref. 27b), and CSi 3 P 2 (Ref. 27b). Part III. Figure S1: Calculated IR spectrum for the 2D ppc structure of CAl 5 + and vibration frequencies. Part IV. Complete Reference 48 S1

Part I. Isomer structures and their relative energies: CAl 5 +, CSi 5 2-, CBe 5, CP 5 3+, and CB 5. The planar pentacoordinate carbon structures are highlighted in red. Top eight isomer structures and relative energies (kcal/mol, at 0 K) of CAl + 5. (The B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ relative energies are in black and red, respectively). All structures are confirmed as stable minima by frequency calculations. D 5h, 1 A 1 C 2v, 1 A 1 C 3v, 1 A 1 C 2v, 1 A 1 C 2v, 1 A 1 (0.00) (1.00) (3.96) (3.36) (7.09) (0.00) (3.80) (5.00) (9.41) (12.34) C s, 1 A C 2v, 3 A 1 C 2v, 1 A 1 (10.15) (11.78) (16.11) Top eight isomer structures and relative energies (kcal/mol, at 0 K) of CSi 5 2-. S2

(B3LYP/aug-cc-pVTZ energies). All structures are confirmed as stable minima by frequency calculations. 0.00 1.31 1.77 C 2, 1 A C 2v, 1 A 1 C 1, 1 A 5.75 8.93 14.12 C s, 1 A C 1, 1 A C s, 1 A 14.57 15.27 D 5h, 1 A 1 C s, 1 A Top eleven isomer structures and relative energies (kcal/mol, at 0 K) of CBe 5. S3

(B3LYP/aug-cc-pVTZ energies). All structures are confirmed as stable minima by frequency calculations. C 2v, 1 A 1 C s, 3 A C s, 1 A C s, 1 A 0.00 1.32 5.48 7.07 C s, 3 A C 1, 1 A C s, 1 A C s, 1 A 7.88 8.46 9.13 9.26 C 2v, 3 A 1 C s, 1 A D 5h, 1 A 1 11.13 12.43 19.82 Top eight isomer structures and relative energies (kcal/mol, at 0 K) of CP 5 3+. S4

(B3LYP/aug-cc-pVTZ energies). All structures are confirmed as stable minima by frequency calculations. C 2, 1 A C s, 1 A C s, 1 A C s, 1 A 0.00 17.22 32.11 34.71 C s, 1 A C 1, 1 A C 2v, 1 A 1 D 5h, 1 A 1 35.50 38.00 41.08 63.86 S5

Top eight isomer structures and relative energies (kcal/mol, at 0 K) of CB 5. (B3LYP/aug-cc-pVTZ energies). All structures are confirmed as stable minima by frequency calculations. C 2v, 2 A 1 C s, 2 A C s, 2 A 0.00 7.06 28.93 C s, 2 A C s, 2 A C s, 2 A 37.45 38.79 43.13 C s, 2 A C 2v, 2 A 1 44.48 44.59 S6

Part II. PpC contained local minimum structures CAl 5 +, CSi 5 2-, CBe 5, CP 5 3+, CB 5, CSi 4 P - (Ref. 27b), and CSi 3 P 2 (Ref. 27b). CAl 5 + D 5h E Tot. = -1250.1134197 a.u. (B3LYP/aug-cc-pVTZ) -1247.770025 a.u. (CCSD(T)/aug-cc-pVTZ//MP2/ aug-cc-pvtz) ZPE = 5.19766 kcal/mol HOMO-LUMO Gap = 2.82 ev NImag = 0 ν Min. = 67.8 cm 1 Cartesian Coordinate (Å) Al 0.000000 2.105660 0.000000 Al 2.002602 0.650685 0.000000 Al -1.237676-1.703515 0.000000 Al 1.237676-1.703515 0.000000 Al -2.002602 0.650685 0.000000 C 0.000000 0.000000 0.000000 S7

CSi 5 D 5h E Tot. = -1485.58060764 a.u. ZPE = 5.60 kcal/mol HOMO-LUMO Gap = 1.63 ev NImag = 0 ν Min. = 140.1 cm 1 Cartesian Coordinate (Å) Si 0.000000 2.003105 0.000000 Si 1.905066 0.618994 0.000000 Si 1.177396-1.620546 0.000000 Si -1.177396-1.620546 0.000000 Si -1.905066 0.618994 0.000000 C 0.000000 0.000000 0.000000 S8

CB 5 C 2v E Tot. = 162.05064260 a.u. (B3LYP/aug-cc-pVTZ) ZPE = 12.10 kcal/mol HOMO-LUMO Gap = 2.51 ev NImag = 0 ν Min. = 114.3 cm 1 Cartesian Coordinate (Å) B 0.000000 1.468705 0.980024 B 0.000000-1.468705 0.980024 B 0.000000-1.399552-0.559078 B 0.000000 1.399552-0.559078 C 0.000000 0.000000 0.345496 B 0.000000 0.000000-1.256487 S9

CP 3+ 5 D 5h E Tot. = 1743.511666 a.u. (B3LYP/aug-cc-pVTZ) ZPE = 5.63 kcal/mol HOMO-LUMO Gap = 3.95 ev NImag = 0 ν Min. = 142.8 cm 1 Cartesian Coordinate (Å) C 0.000000 0.000000 0.000000 P 0.000000 1.909521 0.000000 P 1.816062 0.590074 0.000000 P 1.122388-1.544835 0.000000 P -1.122388-1.544835 0.000000 P -1.816062 0.590074 0.000000 S10

CBe 5 D 5h E Tot. = -111.650965437 a.u. (B3LYP/aug-cc-pVTZ) ZPE = 8.02118 kcal/mol HOMO-LUMO Gap = 1.32 ev NImag = 0 ν Min. = 196.2 cm 1 Cartesian Coordinate (Å) Be 1.600069 0.605226 0.023391 Be -1.436142-0.071508-0.924214 Be 0.270695 0.847245-1.459595 Be -1.165376-0.883517 0.887961 Be 0.725001-0.495359 1.465305 C 0.003654-0.001058 0.004872 S11

CSi 4 P C 2v E Tot. = 1537.54345 a.u. ZPE = 6.10 kcal/mol HOMO-LUMO Gap = 2.54 ev NImag = 0 ν Min. = 132.6 cm 1 Cartesian Coordinate (Å) C -0.10265 0.00000 0.00000 P 1.84154 0.00000 0.00000 Si 0.62500 1.91367 0.00000 Si 0.62500-1.91367 0.00000 Si -1.58954 1.20610 0.00000 Si -1.58954-1.20610 0.00000 S12

CSi 3 P 2 C 2v E Tot. = 1589.34615 a.u. ZPE = 6.36 kcal/mol HOMO-LUMO Gap = 3.11 ev NImag = 0 ν Min. = 122.1 cm 1 Cartesian Coordinate (Å) C -0.16908 0.00000 0.00000 P 0.60892-1.69489 0.00000 P 0.60892 1.69489 0.00000 Si 2.08106 0.00000 0.00000 Si -1.65671-1.18735 0.00000 Si -1.65671 1.18735 0.00000 S13

CSi 3 P 2 C 2v E Tot. = 1589.33894 a.u. ZPE = 6.36 kcal/mol HOMO-LUMO Gap = 3.47 ev NImag = 0 ν Min. = 126.6 cm 1 Cartesian Coordinate (Å) C 0.15440 0.00000 0.00000 Si 0.56414-1.91457 0.00000 Si 0.56414 1.91457 0.00000 Si 2.01550 0.00000 0.00000 P -1.49798-1.10839 0.00000 P -1.49798 1.10839 0.00000 S14

Part III. Figure S1. Calculated IR spectrum for the 2D ppc structure of CAl 5 + and vibration frequencies. Infrared Spectrum 750 627.74 cm -1 600 Intensity 450 300 150 0 0 100 200 300 400 500 600 700 800 Frequency (cm-1) v 1 (a 1 ) 370.4 cm -1 v 2 (a 2 ) 208.6 cm -1 v 3 (e 1 ) 627.7 cm -1 v 4 (e 1 ) 300.8 cm -1 v 5 (e 2 ) 406.8 cm -1 v 6 (e 1 ) 79.1 cm -1 v 7 (e 2 ) 69.4 cm -1 S15

Part IV. Complete Reference 48 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004. S16