Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Similar documents
Notes 17 Sturm-Liouville Theory

Schrödinger Equation Via Laplace-Beltrami Operator

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Limit of a function:

Chapter 25 Sturm-Liouville problem (II)

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Discrete Mathematics I Tutorial 12

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Linear Programming. Preliminaries

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

[Q. Booklet Number]

Approximate Integration

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Important Facts You Need To Know/Review:

Interpolation. 1. What is interpolation?

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Chapter System of Equations

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

Chapter 4. Fourier Series

Using Quantum Mechanics in Simple Systems Chapter 15

Chapter 7 Infinite Series

Lesson 4 Linear Algebra

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

Abel Resummation, Regularization, Renormalization & Infinite Series

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Graphing Review Part 3: Polynomials

Section IV.6: The Master Method and Applications

Frequency-domain Characteristics of Discrete-time LTI Systems

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Topic 4 Fourier Series. Today

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

Simpson s 1/3 rd Rule of Integration

Crushed Notes on MATH132: Calculus

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

BC Calculus Review Sheet

10. 3 The Integral and Comparison Test, Estimating Sums

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Supplemental Handout #1. Orthogonal Functions & Expansions

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

Review of Sections

( a n ) converges or diverges.

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

ELG4156 Design of State Variable Feedback Systems

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Sequence and Series of Functions

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

t=a z=t z=a INTEGRAL EQUATIONS t=z z=x dz D.C. Sharma z=a z=a z t=z z=x t=a M.C. Goyal z=a

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Summary: Binomial Expansion...! r. where

EXERCISE - 01 CHECK YOUR GRASP

Different kinds of Mathematical Induction

lecture 16: Introduction to Least Squares Approximation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Numbers (Part I) -- Solutions

Classical Electrodynamics

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

Power Series Solutions to Generalized Abel Integral Equations

National Quali cations AHEXEMPLAR PAPER ONLY

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

Name of the Student:

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Next we encountered the exponent equaled 1, so we take a leap of faith and generalize that for any x (that s not zero),

1 Tangent Line Problem

Chapter 10 Partial Differential Equations and Fourier Series

Solutions to Final Exam Review Problems

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Advanced Algorithmic Problem Solving Le 6 Math and Search

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

CHAPTER 5: FOURIER SERIES PROPERTIES OF EVEN & ODD FUNCTION PLOT PERIODIC GRAPH

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

POWER SERIES R. E. SHOWALTER

M3P14 EXAMPLE SHEET 1 SOLUTIONS

We will begin by supplying the proof to (a).

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

PROGRESSIONS AND SERIES

Fourier Series and Applications

CITY UNIVERSITY LONDON

Section 2.2. Matrix Multiplication

82A Engineering Mathematics

Transcription:

Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( ) ( ) r( ) d c ( ) ( ) r( ) d m m m 1 Becuse of orthogolity of eigefuctios: f ( ) ( ) r( ) d c ( ) r( ) d c f ( ) ( ) r( ) d ( ) r( ) d Dr. Bghli

For emple, cosider the previous prolem: y y y, y(), y( ) e si We wt to epd fuctio f() i terms of eigefuctios: f ( ) c( ) 1 ( ) ( ) ( si ) r d e e d si d c f ( ) c ( ) 1 f ( ) ( ) r( ) d 1 ( ( ) si ) f e d e si f ( ) e si d Dr. Bghli

For emple tke f()= ( is costt): c ( ) f e si d e c e si d e ( 1) (1 ) e ( 1).. e si e (1 ) 1 For =1 : e ( 1) 1 e si e (1 ) 1 Dr. Bghli

y Eigefuctio Epsio of y=1 Usig 5 terms 1.8 1.6 Ect Eigefuctio Epsio 1.4 1. 1.8.6.4..5 1 1.5.5 3 3.5 Dr. Bghli

y Eigefuctio Epsio of y=1 Usig terms 1.8 1.6 Ect Eigefuctio Epsio 1.4 1. 1.8.6.4..5 1 1.5.5 3 3.5 Dr. Bghli

y 1.8 1.6 Eigefuctio Epsio of y=1 Usig 5 terms Ect Eigefuctio Epsio 1.4 1. 1.8.6.4..5 1 1.5.5 3 3.5 Dr. Bghli

Method of Eigefuctio Epsio for Solvig Ordiry Differetil Equtios Lu f To solve prolem : 1u u 3u 4u I which L is formlly self-djoit secod-order differetil opertor: d d L ( p ) q d d We cosider the ssocited S.L. eigevlue prolem (r=1 for simplicity): L fid ( ) Dr. Bghli

u ( ) 1 f c ( ) 1 c f d [ ] d Lu f L c ( ) 1 1 (1) : 1 1 L LHS L L (1) L 1 1 c ( c ) 1 1 1 Sice eigefuctios re orthogol d hece idepedet: c c Dr. Bghli

u 1 c ( ) Whe r 1 we do ot epd f() d directly write: Lu f L f ( ) 1 1 L f ( ) L r r 1 f ( ) Usig orthogolity of eigefuctios with respect to r(): f d r( )[ ] d Dr. Bghli

Discussio: c u 1 c ( ) If oe of the eigevlues of S.L. system sy j is zero, u() fils to eist if c j c j c If s well, the is idetermite. j c Sice we hve: c j () j j j j j Ad j c e chose ritrry. j [ ] d f d j f d j c u k j j I which k is ritrry costt d hece there is ifiitely my solutios for the prolem. 1 Dr. Bghli

Emple 1- Use the method of eigefuctio epsio to solve: y y 1 y () y (1) Ly f ( ) f 1 1 for l ( ) l si l si f c ( ) 1 1 c si 1 c 1 si d 1 si d 1 si d 1 Dr. Bghli

c c 1 1 [ cos ] [1 1 ] eve 4 1 4 si odd 1 odd y ( ) 1 1 si y y 1 si si si 1 1 1 odd 4 4 ( )si si 1 1 odd Dr. Bghli

4 ( ) eve odd y 1 odd 4 si ( ) Ect Solutio: Use Lplce trsform method: Dr. Bghli

Dr. Bghli

Ect Solutio: Lplce trsform: y y 1 y () y (1) L( y ) L( y ) L(1) L( y ) sl( y ) y () sl( y ) y () L( y ) L(1) s[ sl( y ) y ()] y () L( y ) L(1) y () y () s L( y ) L( y ) s 1 L( y) s 1 s s s ( s ) 1 1 1 s [ ] s s ( s ) L 1 1 ( y ) L ( si ) ( ) ( cos ) L L y 1 1 si cos y (1) 1 1 1 1 cos 1 y ect cos ( )si si Dr. Bghli

y Solutio of y"+y=1 y()=y(1)= -. Ect Solutio Method of Eigefuctio Epsio (3 terms) -.4 -.6 -.8 -.1 -.1 -.14 -.16.1..3.4.5.6.7.8.9 1 Dr. Bghli

Emple - Use the method of eigefuctio epsio to solve: y y si y y For the system y 4y si with the sme B.C., wht goes wrog? Solutio: π r r '' Cse ( ) tke : ( ) c Dr. Bghli

Cse o eigevlue (verify t home) Cse r i ( ) Acos Bsi ( ) A si B cos B A si si 1,,... ( ) Acos ( ) cos Dr. Bghli

si f c f si c cos (It is ideed Fourier Cosie Series) 1 si d c d c c c 4 c f ( ) ( ) d [ ( )] d si cos d c cos d si cos d c [1 ( 1) 1 ] c 4 1 eve odd Dr. Bghli

si 4 1 eve cos We lso epd the solutio i series of eigefuctios: y cos 1 Sustitute i differetil equtio: y y si cos cos 1 1 4 cos (1 ) eve 4 cos cos (1 ) 1 eve Dr. Bghli

4,4,6, 1 ( ) y 1 4 eve 1 ( ) cos For the system: y 4y si cos 4 cos 1 1 1 eve 4 cos (1 ) eve 4 4 cos cos (1 ) Dr. Bghli

1 4,4, 1 (4 ) We hve troule to fid?? ( ) cos f si. cos d No Solutio! j Dr. Bghli

It is iterestig to see why the prolem hs o solutio whe we solve it i differet wy, usig for emple Lplce trsform. We will fid: 1 y C1cos C si si 3 1 y C 1si C cos cos 3 y y C 1 3 1 C 3 Icosistet! No Solutio! Dr. Bghli

No-homogeeous Boudry Coditios To illustrte the procedure i this cse let us cosider: y y f ( ) y y y 1 y 1 Choose: y u v y u v y u v u v u v f u u v v f ( ) Tke u d v such tht: u u f ( ) v v Dr. Bghli

Boudry coditios: y y u u v v u v u v Tke oudry coditios such tht: u u v v 1 1 1 1 1 1 y y 1 1 1 1 u u v v u v u v Tke oudry coditios such tht: u 1 u 1 v 1 v 1 Dr. Bghli

u u f u () u() u (1) u(1) No-homogeeous prolem with homogeeous B.C. (S.L. prolem) Solve y the method of eigefuctio epsio. v v v () v() v (1) v(1) Homogeeous prolem with o-homogeeous B.C. Solve y direct methods, e.g. here we hve: r r i v A si B cos Ad we fid A d B usig B.C. s, filly we we will hve: y ( ) u( ) v ( ) Dr. Bghli