LHeC Recirculator with Energy Recovery Beam Optics Choices

Similar documents
Muon RLA Design Status and Simulations

Collider Rings and IR Design for MEIC

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

TeV Scale Muon RLA Complex Large Emittance MC Scenario

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

Beam Dynamics of Energy Recovering Linacs

6 Bunch Compressor and Transfer to Main Linac

Linear Collider Collaboration Tech Notes

Pros and Cons of the Acceleration Scheme (NF-IDS)

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

CEBAF-ER: EXTENDING THE FRONTIER OF ENERGY RECOVERY AT JEFFERSON LAB *

7th IPAC, May 8-13, 2016, Busan, Korea

Lattice Design of 2-loop Compact ERL. High Energy Accelerator Research Organization, KEK Miho Shimada and Yukinori Kobayashi

Overview of Acceleration

Nonintercepting ODR Diagnostics for Multi-GeV Electron Beams

COMBINER RING LATTICE

Compressor Lattice Design for SPL Beam

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

USPAS Course on Recirculating Linear Accelerators

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Notes on the HIE-ISOLDE HEBT

Compact Wideband THz Source

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Lattice Design and Performance for PEP-X Light Source

ERL upgrade of an existing X-ray facility: CHESS at CESR

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Accelerator Physics Issues of ERL Prototype

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

Beam Dynamics Activities at the Thomas Jefferson National Accelerator Facility (Jefferson Lab)

FACET-II Design Update

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

Overview of HEMC Scheme

Status of linear collider designs:

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Synchrotron Based Proton Drivers

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

4.3 Novel Lattice Solutions for the LheC

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

New Tweaker Quadrupole Magnets for the LCLS LTU

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac

Optics considerations for

Director s Accelerator R&D Review CASA Summary/ELIC

Beam Optics design for CEPC collider ring

FODO Cell Introduction to OptiM

ILC Damping Ring Alternative Lattice Design **

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

EIC at JLab - design considerations and detector overview

WG2 on ERL light sources CHESS & LEPP

MEIC Electron-Ion Collider - Space-Charge Issues

Accelerator Physics Final Exam pts.

Preliminary Detector Design for the EIC at JLab

Low slice emittance preservation during bunch compression

USPAS Accelerator Physics 2017 University of California, Davis

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

I. Introduction and background

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

LOLA: Past, present and future operation

New Electron Source for Energy Recovery Linacs

Bernhard Holzer, CERN-LHC

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Longitudinal Top-up Injection for Small Aperture Storage Rings

ASSESMENT OF OPPORTUNITY FOR A COLLINEAR WAKEFIELD ACCELERATOR FOR A MULTI BEAMLINE SOFT X-RAY FEL FACILITY

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles)

RF LINACS. Alessandra Lombardi BE/ ABP CERN

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

Accelerator Physics. Accelerator Development

Incoherent Thoughts About Coherent Light Sources

Linac Driven Free Electron Lasers (III)

Chromatic Corrections for the LCLS-II Electron Transport Lines

Muon Front-End without Cooling

Requirements & Studies for CLIC

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

HE-LHC Optics Development

Overview of Energy Recovery Linacs

Emittance preservation in TESLA

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

Full-Acceptance Detector Integration at MEIC

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

Study of Alternative Optics for the NLC Prelinac Collimation section

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Conceptual design of an accumulator ring for the Diamond II upgrade

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Accelerator Design and Construction Progress of TPS Project

Engines of Discovery

An ERL-Based High-Power Free- Electron Laser for EUV Lithography

Issues of Electron Cooling

Use of Recirculation in Short-Wavelength FEL Drivers

Tools of Particle Physics I Accelerators

Transcription:

LHeC Recirculator with Energy Recovery Beam Optics Choices Alex Bogacz in collaboration with Frank Zimmermann and Daniel Schulte Alex Bogacz 1

Alex Bogacz 2

Alex Bogacz 3

Alex Bogacz 4

Alex Bogacz 5

Alex Bogacz 6

Energy Recovery Recirculating Linacs - Motivation Future high energy (multi-tens of GeV), high current (tens of milli-amperes) beams would require gigawatt-class RF systems in conventional linacs a prohibitively expensive proposition. However, invoking energy recovery alleviates extreme RF power demands; required RF power becomes nearly independent of beam current, which improves linac efficiency and increases cost effectiveness. Energy recovering linacs promise efficiencies of storage rings, while maintaining beam quality of linacs: superior emittance and energy spread and short bunches (sub-pico sec.). RLAs that use superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each particle to pass several times through each highgradient cavity. GeV scale energy recovery demonstration with high ratio of accelerated-torecovered energies (5:1) was carried out on the CEBAF RLA (23) Alex Bogacz 7

Examples of ER RLA s CEBAF ER Exp & Jlab s FEL Multi-pass linac Optics in ER mode Choice of linac Optics - 13 FODO vs No quad focusing Choice of quad gradient profile in the linacs Single pass wake-field effects Linear lattice: 3-pass up + 3-pass down Arc-to-Linac Synchronization - Momentum compaction Quasi-isochronous lattices Choice of Arc Optics -135 FODO vs FMC (Flexible Momentum Compaction ) Arc Optics Choice - Emittance preserving lattices Various flavors of FMC lattices in the second stability region (Im. t, DBA, TEM) Emittance dilution & momentum spread due to quantum excitations Magnet apertures Overview - Design Choices Alex Bogacz 8

LHeC Recirculator with ER Linac 1 1 GeV/pass.5 GeV Arc1, 3, 5 Arc 2, 4 Arc 6 Linac 2 1 GeV/pass IP 6.5 GeV LHC Alex Bogacz 9

CEBAF - ER Experiment (23) Modifications include the installation of: RF/2 path length delay chicane Dump and beamline with diagnostics Alex Bogacz 1

Transverse beam profiles Arbitrary Units Beam viewer near the exit of the South Linac ~ 1 GeV Accelerating beam 5 4 3 2 1 ~ 55 MeV Decelerating beam 5 1 15 Distance (mm) 3-wire scanner x 2 beams = 6 peaks 2 Alex Bogacz 11 25 3 35

Volts.2 RF Response to Energy Recovery Gradient modulator drive signals with and without energy recovery in response to 25 sec beam pulse entering an RF cavity.15.1.5. -.5 25 s -.1 -.15 without ER with ER 5 1 15 2 Time( s) 25 3 35 Alex Bogacz 12

JLAMP RLA FEL with ER Alex Bogacz 13

Linacs LHeC Recirculator with ER Linac 1 1 GeV/pass.5 GeV Arc1, 3, 5 Arc 2, 4 Arc 6 Linac 2 1 GeV/pass IP 6.5 GeV LHC Alex Bogacz 14

PHASE_X&Y 15.5 5 Linac Optics 13 FODO Cell E =.5 GeV phase adv/cell: x,y= 13 56 Q_X Q_Y 56 2 8 cavities 2 8 cavities 7 MHz RF: linac quadrupoles Lc =1 cm Lq=1 cm 5-cell cavity GF=.13 Tesla/m Grad = 17.361 MeV/m GD= -.161 Tesla/m E= 555.56 MV Alex Bogacz 15

2 5 Linac 1 Focusing profile E =.5 1.5 GeV quad gradient 18 18 FODO cells (18 2 16 = 576 RF cavities) Alex Bogacz 16

PHASE_X&Y.5 5 5 Linac 3 (Linac 1, pass 2) Optics E = 2.5 3.5 GeV 1 E L E ds min 18 betatron phase advance Q_X Q_Y 18 Alex Bogacz 17

8 5 8 5 8 8 5 5 8 5 8 5 Linac 1 multi-pass + ER Optics.5 GeV 1.5 GeV 6.5 GeV 5.5 GeV E 18 18 2.5 GeV 3.5 GeV 4.5 GeV 3.5 GeV 18 18 4.5 GeV 5.5 GeV 2.5 GeV 1.5 GeV 18 18 Alex Bogacz 18

8 5 Linac 1 Multi-pass ER Optics 1 M 1 1 M 1 M M M M 648.5 GeV 1.5 GeV 2.5 GeV 3.5 GeV 4.5 GeV 5.5 GeV 6.5 GeV Alex Bogacz 19

2 5 Linac 2 Focusing profile E = 1.5.5 GeV (ER) quad gradient 18 18 FODO cells (18 2 16 = 576 RF cavities) Linac 2 multi-pass optics with ER mirror symmetric to Linac 1 Alex Bogacz 2

8 5 8 5 Linac 1 and 2 Multi-pass ER Optics Linac 1 Linac 2 648 648.5 GeV 1.5 GeV 2.5 GeV 3.5 GeV 4.5 GeV 5.5 GeV 6.5 GeV 6.5 GeV 5.5 GeV 4.5 GeV 3.5 GeV 2.5 GeV 1.5 GeV.5 GeV Alex Bogacz 21

15 5 Linac 1 NO quad focusing profile E =.5 1.5 GeV Zero quad gradient 18 18 FODO cells (18 2 16 = 576 RF cavities) Alex Bogacz 22

15 5 Linac 1 NO quad Multi-pass ER Optics 648.5 GeV 1.5 GeV 2.5 GeV 3.5 GeV 4.5 GeV 5.5 GeV 6.5 GeV Alex Bogacz 23

15 15 NO quad vs 13 FODO E =.5 1.5 GeV.5 -.5 5 E x/ y 12.9 /12.7 cm / MeV Zero quad gradient 18 E x/ y 1.8 /1.6 cm / MeV 13 FODO 18 Alex Bogacz 24

Arcs LHeC Recirculator with ER Linac 1 1 GeV/pass.5 GeV Arc1, 3, 5 Arc 2, 4 Arc 6 Linac 2 1 GeV/pass IP 6.5 GeV LHC Alex Bogacz 25

15 Arc Optics - 135 FODO Cell 1.5-1.5.5 PHASE_X&Y 5.5 GeV phase adv/cell: x,y= 135 52.3599 Q_X Q_Y 52.3599 Arc dipoles: $Lb=4 cm $B=2.2 kgauss $ang=.3 deg. $rho = 764 meter Arc quadrupoles $Lq=1 cm $G= 1.2 kg/cm Alex Bogacz 26

15 135 FODO Cell 1.5-1.5 Emittance dispersion H averaged over bends 52.3599 Momentum compaction 2 2 H D 2 DD ' D' D M 56 ds bend D H 2.2 1 2 m 2 M 56 3.19 1 m Alex Bogacz 27

Quasi-isochronous condition Arc into Linac Momentum compaction D M ds D 56 bend p C M56 p RF 36 C 36 RF RF N cell M cell 56 p p p p N RF cell 3 1 4.428 m 6 FODO M56 3.19 1.5 deg RF 2 m Alex Bogacz 28

Emittance growth due to quantum excitations N 2 3 C r q 6 5 C r q 55 32 3 15 2.818 1 m, L H ds c mc 5 3 2 H D 2 DD ' D ' 2 2 2 13 3.8319 1 m, H, N 2 3 C r q H 6 2 total bend of the arc :, for 18 arc : N 55 r c 48 3 mc H 6 2 2 at 5.5 GeV H N 2.2 1 2 m 82 micron rad Alex Bogacz 29

Momentum spread due to quantum excitations E 2 2 55 L E c 5 1 2 2 3 48 3 mc ds L 1 ds 3 2, total bend of the arc :, E 2 2 E 55 c 5 2 2 2 48 3 mc for 18 arc : Alex Bogacz 3

Quasi-isochronous FMC Cell 15.3 -.3 Emittance dispersion H avereged over bends Momentum compaction 52.3599 2 2 H D 2 DD ' D' H 8.8 1 factor of 2.5 smaller than FODO 3 m D M 56 ds bend D 3 M 56 1.16 1 m factor of 27 smaller than FODO Alex Bogacz 31

15 Arc Optics 135 FODO vs FMC Cell 1.5-1.5 15 1.5-1.5 135 FODO FMC Cell 52.3599 52.3599 H 2.2 1 2 m H 8.8 1 3 m 2 M 56 3.19 1 m 3 M 56 1.16 1 m Alex Bogacz 32

Quasi-isochronous condition Arc into Linac Momentum compaction D M ds D 56 bend p C M56 p RF 36 C 36 RF RF N cell M cell 56 p p p p N RF cell 3 1 4.428 m 6 FMC M56 1.16 1.18 deg RF 3 m factor of 27 smaller than FODO FODO M56 3.19 1.5 deg RF 2 m Alex Bogacz 33

-.3 PHASE_X&Y 15.3.5 FMC Imaginary t Cell 5.5 GeV second stability region: x,y > 18 6 52.3599 Q_X Q_Y 52.3599 Arc dipoles: Arc quadrupoles H 8.8 1 M56 1.16 1 3 m 3 m $Lb=4 cm $B=2.2 kgauss $ang=.3 deg. $rho = 764 meter $G= -1.53 kg/cm $G1= 5.6 kg/cm $G2= -5.32 kg/cm $G3= 5.7 kg/cm Alex Bogacz 34

5 FMC Double Bend Achromat Cell.5 -.5.5 PHASE_X&Y 5.5 GeV second stability region: x > 18 6 52.3599 Q_X Q_Y 52.3599 H 2.2 1 M56 5.6 1 3 3 m m Arc dipoles: $Lb=4 cm $B=2.2 kgauss $ang=.3 deg. $rho = 764 meter Arc quadrupoles $G= 2.5 kg/cm $G1= 2.9 kg/cm $G2= -4.7 kg/cm $G3= 2.97 kg/cm Alex Bogacz 35

-.5 PHASE_X&Y 5.5.5 FMC Theoretical Emittance Minimum Cell 5.5 GeV second stability region: x > 18 6 52.3599 Q_X Q_Y 52.3599 H 1.2 1 M56 5.7 1 3 3 m m Arc dipoles: $Lb=4 cm $B=2.2 kgauss $ang=.3 deg. $rho = 764 meter Arc quadrupoles $G= 2.92 kg/cm $G1= 2.89 kg/cm $G2= -4.8 kg/cm $G3= 2.97 kg/cm Alex Bogacz 36

-.5 -.5 -.5 5.5 5.5 5.5 Arc Optics Cumulative emittance growth N 2 Cq r H, H D 2 DD ' D ' 3 6 2 2 2 Arc 1, Arc2 Arc 3 Arc 4, Arc5, Arc 6 Imaginary t Optics DBA-like Optics TEM-like Optics BETA_X BETA_Y DISP_X 52.3599 DISP_Y BETA_X BETA_Y DISP_X 52.3599 DISP_Y 52.3599 H 8.8 1 3 m H 2.2 1 3 m H 1.2 1 3 m factor of 18 smaller than FODO total emittance increase (all 5 arcs): x N = 1.25 4.5 m rad =5.6 m rad Alex Bogacz 37

-.5 5.5 Highest Arc Optics Emittance growth N 2 3 C r q H 6 2 5.5 GeV, = 1 5 E 2 2 E 55 c 5 2 2 2 48 3 mc TEM-like Optics 29 emittance increase (last arc): x N = 4.5 m rad RMS fluctuations of E/E = 2.7 1-4 total emittance increase (all 6 arcs): x N = 1.25 4.5 m rad =5.6 m rad Alex Bogacz 38

Size_X[cm] Size_Y[cm].5.5 Arc 5 Beam envelopes, Magnet apertures x N = 5 m rad Last pass before IR, 5.5 GeV p/p= 2.7 1-4 12 RMS (beam stay clear) ~ 48 mm TEM-like Optics Ax_bet Ay_bet Ax_disp Ay_disp 29 Alex Bogacz 39

Size_X[cm] Size_Y[cm].1.1 -.5 15.5 Arc 1 Beam envelopes, Magnet apertures x N = 2 m rad p/p= 5 1-4 ER lowest pass, 1.5 GeV 12 RMS (beam stay clear) ~ 96 mm Imaginary t FMC Optics 29 Ax_bet Ay_bet Ax_disp Ay_disp 29 Alex Bogacz 4

Conclusions Proof-of-existence ER RLAs: Jlab FEL, CEBAF-ER Solution for Multi-pass linac Optics in ER mode Choice of linac Optics - 13 FODO Linear lattice: 3-pass up + 3-pass down Optimized quad gradient profile in the linacs (single-pass wake-field effects) Arc-to-Linac Synchronization - Momentum compaction Quasi-isochronous lattices Choice of Arc Optics - Flexible Momentum Compaction Arc Optics Choice - Emittance preserving lattices Arcs based on variations of FMC optics (Im. t, DBA, TEM) Acceptable level of emittance dilution & momentum spread Magnet apertures Alex Bogacz 41