Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku Oki earthquake

Similar documents
Three Dimensional Simulations of Tsunami Generation and Propagation

Atmospheric pressure change associated with the 2003 Tokachi-Oki earthquake

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

LETTER Earth Planets Space, 56, , 2004

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Infrasound associated with large Sumatra earthquakes and tsunami

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Source of the July 2006 West Java tsunami estimated from tide gauge records

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, , JAPAN

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

Tsunami modeling from the seismic CMT solution considering the dispersive effect: a case of the 2013 Santa Cruz Islands tsunami

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

revised October 30, 2001 Carlos Mendoza

Rapid magnitude determination from peak amplitudes at local stations

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Data Assimilation System for Seismoacoustic Waves

Inversion of tsunami data. A. Sladen CNRS, Géoazur 1/35

Seismic signals from tsunamis in the Pacific Ocean

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Seismogeodesy for rapid earthquake and tsunami characterization

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Notes on Comparing the Nano-Resolution Depth Sensor to the Co-located Ocean Bottom Seismometer at MARS

Rupture Characteristics of Major and Great (M w 7.0) Megathrust Earthquakes from : 1. Source Parameter Scaling Relationships

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Earthquakes Chapter 19

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Contents of this file

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU

A PROTOTYPE OF WEB-APPLICATION FOR TSUNAMI DATABASE ALONG SOUTHERN JAVA ISLAND COASTLINE

arxiv: v1 [physics.geo-ph] 31 Dec 2013

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers

Title. Author(s)Yomogida, Kiyoshi; Yoshizawa, Kazunori; Koyama, Junj. CitationEarth, Planets and Space, 63(7): Issue Date Doc URL.

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake

DETERMINATION OF SLIP DISTRIBUTION OF THE 28 MARCH 2005 NIAS EARTHQUAKE USING JOINT INVERSION OF TSUNAMI WAVEFORM AND GPS DATA

Moment tensor inversion of near source seismograms

Two-dimensional simulations of the tsunami dynamo effect using the finite element method

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Earthquake Hazards. Tsunami

EXCITATION AND PROPAGATION OF SHORT-PERIOD SURFACE WAVES IN YOUNG SEAFLOOR. Donald W. Forsyth. Department of Geological Sciences, Brown University

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Earthquakes and Tsunamis

Seismic Source Mechanism

The 2011 Tohoku Earthquake and Tsunami Sequence. Mitchell May, EPSC 330

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Inquiry: Sumatran earthquakes with GPS Earth Science Education

Double-difference relocations of the 2004 off the Kii peninsula earthquakes

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Real time Monitoring System for Earthquakes and Tsunamis (DONET)

REAL-TIME DETECTION OF THE SOURCE AREA OF AN INTENSE TSUNAMI CASE STUDY OF THE 2011 GREAT EAST JAPAN EARTHQUAKE

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii

Earthquake Hazards. Tsunami

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Tohoku-oki event: Tectonic setting

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Synthetic sensitivity analysis of high frequency radiation of 2011 Tohoku-Oki (M W 9.0) earthquake

Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with

気象研究所技術報告第 77 号 2017 第 1 章巨大地震の規模等の把握 1.1 様々な早期規模推定手法 本項の論文は, 著者からの転載許可を受けて掲載している (Katsumata, A., S. Aoki, Y. Yoshida, H. Ueno and T. Yokota, 2012: Ra

Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake

Very basic tsunami physics...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

Amplification of Tsunami Heights by Delayed Rupture of Great Earthquakes along the Nankai Trough

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA

Coseismic slip model

Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations

NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

Preparation for Future Earthquake and Tsunami Hazards: Lessons Learned from the 2004 Sumatra-Andaman Earthquake and the Asian Tsunami

Transcription:

GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049146, 2011 Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku Oki earthquake Nobuo Arai, 1 Makiko Iwakuni, 1 Shingo Watada, 2 Yuichi Imanishi, 2 Takahiko Murayama, 1 and Mami Nogami 1 Received 1 August 2011; revised 16 September 2011; accepted 19 September 2011; published 1 November 2011. [1] Atmospheric pressure changes caused by the 2011 Off the Pacific Coast of Tohoku, Japan earthquake (Mw = 9.0) are investigated. Sensitive microbarographs in and around Japan recorded unequivocal signals associated with the tsunami. We identify them as atmospheric boundary waves excited by the uplift and subsidence of the ocean surface, on the basis of the waveform characteristics as well as similarity with the data from ocean bottom pressure gauges. Potential usefulness of an observation network of atmospheric pressure is discussed regarding the improvement of the tsunami warning system. Citation: Arai, N., M. Iwakuni, S. Watada, Y. Imanishi, T. Murayama, and M. Nogami (2011), Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku Oki earthquake, Geophys. Res. Lett., 38,, doi:10.1029/ 2011GL049146. 1. Introduction [2] It is well known that sudden and strong vertical ground displacements caused by earthquakes produce infrasound waves in the atmosphere [Cook, 1971]. Mikumo [1968] modeled long period acoustic gravity waves in the atmosphere caused by the Alaskan earthquake of March 27, 1964 to be observed at distant stations. The same excitation mechanism applies also to submarine earthquakes through uplift and subsidence of ocean surface. Mikumo et al. [2008] reported observations of the acoustic gravity waves radiated from the tsunami source region during the 2004 Sumatra Andaman earthquake. Le Pichon et al. [2005] detected infrasound radiation from the epicenter and nearby land mass during the shaking and from shorelines during the tsunami arrival. [3] The disastrous earthquake (Mw = 9.0) on March 11, 2011 off the Pacific coast of Japan caused large tsunami, which hit vast Pacific coastal areas of the north eastern part of Honshu Island (Tohoku region). The tsunami source model [Fujii et al., 2011] indicates that a vast area of the ocean surface uplifted and subsided by more than 10 m during the tsunami generation. This event has provided a rare opportunity for investigating long period atmospheric signals excited by the tsunami generation. [4] In this paper, we explore barograph data obtained at a domestic gravity station in the Tohoku region as well as IMS (International Monitoring System for Comprehensive nuclear Test Ban Treaty (CTBT) verification regime) stations in Far 1 Japan Weather Association, Tokyo, Japan. 2 Earthquake Research Institute, University of Tokyo, Tokyo, Japan. Copyright 2011 by the American Geophysical Union. 0094 8276/11/2011GL049146 East Asia in search for atmospheric signals from the tsunami source region. Owing to the size of the event and the short distances to the source, these stations are expected to yield atmospheric signals with the highest signal to noise ratio ever obtained. 2. Observed Atmospheric Pressure Changes [5] Figure 1 shows the locations of the microbarograph stations used here and the tsunami source model by Fujii et al. [2011]. [6] At Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, atmospheric pressure was recorded using a digital barometer F 452 manufactured by Yokogawa Weathac for correction of the atmospheric loading effect on superconducting gravimetry (Dr. Tamura, personal communication, 2011). The resolution of recordings is 0.1 Pa and the sampling interval is 1 second. The atmospheric pressure data at Mizusawa, shown in Figure 2, indicates short period undulations between 05:46 and 05:52 which was induced by the passing of large amplitude seismic waves [Watada et al., 2006]. Following them, a striking, long period wave train is readily visible in the atmospheric pressure data. This is characterized by a gradual increase followed by a more rapid decrease with oscillatory changes superposed on it. By applying an autoregressive (AR) model for extraction of signals [Arai et al., 2009] and the Akaike Information Criterion (AIC) for picking the on set [e.g., Sleeman and van Eck, 1999], the on set time and the peak to peak amplitude of the wave train are estimated to be 05:52 and 64 Pa, respectively. [7] Similar changes in the atmospheric pressure were also recorded at the following IMS stations; Isumi (IS30), Petropavlovsk Kamchatskiy (IS44) and Ussuriysk (IS45) (see Figure 1 for their locations). Each station is composed of an array of microbarographs with an aperture of about 2 km, and an array element is equipped with a sensor having a flat frequency response in the range DC 40 Hz [Le Pichon et al., 2010]. IMS stations provide two kinds of data, one is the band pass filtered output and the other is the absolute pressure output (raw data). Although band pass filtered data are usually used for CTBT s monitoring purpose, here we used absolute pressure data in this study. The sampling rate of the data is 20 Hz. Figure 3a shows six channel records at Isumi (IS30). From 05:48 to 05:56 and from 06:16 to 06:22, pressure changes induced by the seismic ground motions of the main shock and an aftershock are visible, respectively. Between these co seismic waves, a similar shaped long period wave train can be recognized from 06:02 to 06:15 with peak to peak amplitude ranging between 21 and 28 Pa. Figures 3b and 3c show the records 1of5

Figure 1. Locations of the barograph stations that recorded atmospheric pressure changes from the 2011 Off the Pacific Coast of Tohoku, Japan earthquake. The tsunami source model by Fujii et al. [2011] is also shown in the plot. Estimated slip distribution of each sub fault is indicated by gradation. The open star indicates the JMA (Japan Meteorological Agency) epicenter. from Petropavlovsk Kamchatskiy (IS44) and Ussuriysk (IS45), respectively. Similar wave trains with good coherence are also observed at these stations. Table 1 summarizes the arrival times and amplitudes of the observed signals. [8] At each station the back azimuth of the signals is measured by applying the F K analysis to the array. Considering Figure 2. Microbarograph record at Mizusawa. Figure 3. Microbarograph records at three IMS stations: (a) IS30 (Isumi), (b) IS44 (Petropavlovsk Kamchatskiy), and (c) IS45 (Ussuriysk). Solid triangles indicate the picked on set time at each station. 2of5

Table 1. Parameters of the Atmospheric Signals Observed at the Four Stations Arrival Time (UTC) Station Latitude (N) Longitude (E) r a 0 (km) r b peak (km) On set hh:mm:ss Peak hh:mm:ss Back azimuth (deg) P P Amplitude (Pa) Mizusawa 39.1333 141.1334 110 270 05:52:48 06:00:46 64 IS30 35.3077 140.3138 290 430 06:02:25 c 21(38) d 21 28 IS44 53.1058 157.7139 1940 1990 07:25:07 c 240(220) d 8 16 IS45 44.1999 131.9773 1050 1210 06:46:54 06:54:27 82(124) d 21 28 a r 0 is the distance between each station and the nearest sub fault with slip more than 20 m investigated by Fujii et al. [2011]. b r peak is the distance between each station and the trench axis side of the sub fault with largest slip (37.9860N, 143.8100E) investigated by Fujii et al. [2011]. c Since traces obtained at both IS30 and IS44 have a broad peak, we did not pick the time of arrival of the peak. d Back azimuths are estimated by F K analysis. The values shown in a bracket are the back azimuth of the JMA epicenter from each station. the long wave lengths of the observed atmospheric pressure signals, the aperture of each IMS station is too small to yield accurate results. Nevertheless, the estimates of the back azimuths (Table 1) are roughly consistent with the direction of the tsunami source region as measured from each station. [9] Using the origin time (05:46:18) of the earthquake determined by Japan Meteorological Agency (JMA) and assuming that these waves were generated in the tsunami source region at the origin time of the event, the apparent group velocity was calculated for each station. The calculated group velocity falls within the range of 282 327 ms 1. [10] The attenuation relation of atmospheric pressure changes is shown in Figure 4. The amplitude is proportional to r 1/2, where r is the distance between the tsunami source region and each station, although the amplitude appears to depend also on the direction. [11] These facts strongly suggest that the observed atmospheric wave trains were generated in the tsunami source region and propagated to each station as surface waves with the speed of about 300 ms 1. 3. Interpretation of the Extracted Characteristics of the Observed Atmospheric Waves [12] Here we show that the observed atmospheric pressure changes can be consistently interpreted as the propagation of atmospheric boundary waves excited by the co seismic uplift and subsidence of the ocean surface. [13] In a compressible fluid with gravitational stratification, propagating waves are classified into two families; acoustic waves and gravity waves. In addition to these, there is a special branch known as the boundary wave or Lamb wave, which propagates along the bottom boundary of the atmosphere [e.g., Watada, 2009]. This wave shows little dispersion, and the group velocity is about 300 ms 1 [e.g., Watada and Kanamori, 2010]. Phase velocities of three kind of atmospheric waves and the energy density distribution of boundary wave are shown in Figure 5. Because the boundary wave propagates along the surface of the Earth, its amplitude is inversely proportional to the square root of distance. [14] Sudden vertical deformation of the sea surface during the tsunami generation produces instant changes of the atmospheric pressure in the source region (Figure 6a). The resultant pressure changes will have a spatial dependence similar to the deformed profile of the sea surface in the tsunami source area (Figure 6b). If this atmospheric disturbance has a period longer than the local acoustic cutoff period ( 300 s), it propagates horizontally as boundary waves with little dispersion. Then, the width of the tsunami source region in the radial direction gives the apparent wavelength of the barometric signal. The great Tohoku Oki earthquake was a shallow dipping thrust with a strike parallel to the Japan trench and is interpreted as an interplate earthquake associated with the subduction of the Pacific plate. Because the fault was longer along the trench axis, the wavelength is shorter in the dip direction and longer in the strike direction. This is consistent with the observed wavelength (Figures 2 and 3), considering that Mizusawa and IS45 are approximately in the dip direction, whereas IS30 and IS44 are in the strike direction. [15] On the other hand, propagating gravity waves or acoustic waves in high altitude more than 90 km associated with the Tohoku Oki earthquake were reported [e.g., Tsugawa et al., 2011]. Atmospheric wave discussed in this paper is a boundary wave, in other words, an evanescent wave (see Figure 5), and therefore, the atmospheric pressure changes focused on here may not be easily observed in high altitude unless it is excited strongly. So it is not inconsistent that observed waves in high altitude had different characteristics from our observations. Figure 4. Attenuation relation of the atmospheric pressure changes. Circles and triangles indicate the amplitude observed along dip direction and strike direction, respectively. The distance (r) is measured from the trench axis side of the sub fault with the largest slip. Dashed lines are proportional to r 1/2. 3of5

resulting in a total of 5 m of sea surface elevation. We point out similarity between these waveforms and the atmospheric signals recorded at Mizusawa and IS45 (Figures 2 and 3c). Because the tsunami wave is well described as a nondispersive long wave in the deep ocean where the two pressure gauges are located, the sea level changes observed by them reflect the original shape of the tsunami, only distorted by the local propagation speed proportional to (gh) 1/2,where g is local gravity and h is sea depth. Similarly, atmospheric disturbances with long wavelength caused by the ocean surface displacements during tsunami generation must have traveled with little distortion to the barometer stations in the dip direction. [17] On the other hand, the ocean bottom pressure gauges deployed by Japan Agency for Marine Earth Science and Technology (JAMSTEC) are located off the Pacific coast of Hokkaido and therefore in the strike direction. They also recorded tsunami signals [Maeda et al., 2011], but the wavelength is longer than that off the Pacific coast of Tohoku. This is also consistent with what are recorded at IS30 and IS44, the barometer stations in the strike direction. [18] The atmospheric pressure change excited by uplift or subsidence of the sea surface (P) can be approximately given by P = rcw, if the ratio of the time constant of co seismic vertical deformation to the local buoyancy period ( 340 s) is less than 0.3, and if the phase velocity of the expanding deformation is much faster than the sound velocity [Watada et al., 2006; Watada, 2009]; where r is ambient air density Figure 5. (a) Dispersion curves of fundamental mode acoustic wave, fundamental mode gravity wave and boundary wave and (b) modal energy density distribution of the boundary wave (T = 641 s, phase velocity = 311 ms 1, group velocity = 311 ms 1 ) normalized by the surface value for the atmospheric model U. S. atmosphere standard 1976 [Watada and Kanamori, 2010]. [16] Another evidence for the common origin of the atmospheric waves and the tsunami is provided by comparison with the data of ocean bottom pressure gauges. The two ocean bottom pressure gauges near the tsunami source area deployed by The University of Tokyo recorded significant tsunami waves [Maeda et al., 2011]. The gauges are located about 45 and 75 km off the Pacific coast of Tohoku and 1013 and 1618 m in depth, respectively. Tsunami records obtained by them indicate a characteristic sea level changes following the earthquake. The sea level rose gradually from 0 to 2 m in the first 700 s and the sea level went suddenly up to 3 m within an approximate duration of 150 s, Figure 6. (a) Conceptual diagram of excitation of atmospheric pressure changes by the tsunami generation and (b) schematic diagram to explain the observed waves illustrating the geographical relationship between the tsunami source geometry and station direction. 4of5

near the sea surface, c is air sound velocity near the sea surface and w is the corresponding particle velocity of the vertical deformation of the sea surface. The w is estimated as the observed tsunami wave height (5 m) at ocean bottom pressure gauges near the tsunami source region divided by the time constant (30 s) of co seismic vertical deformation [Fujii et al., 2011]. Using r = 1.3 kgm 3, c = 330 ms 1, the maximum amplitude at the source region can be roughly calculated as 70 Pa. This estimate is consistent with the amplitude observed at Mizusawa, which is located 260 km from the maximum slip area investigated by Fujii et al. [2011]. If the source is rectangular shape, the tsunami energy in the direction of the major axis decreases much faster than the energy in the direction of the minor axis [Kajiura, 1970]. The directivity of the amplitude of atmospheric waves is explained by the same mechanism. The observed amplitude at IS45 is comparable to that at IS30 in spite of the much longer distance because of the directivity of energy radiation. Amplitude at other stations is also explained by taking the geometrical decay into account (Figure 4). [19] Given these features of the observed wave trains and their physical interpretations, we conclude that the signals observed at the barograph stations are the atmospheric boundary waves excited by the sea surface deformation in the tsunami source region and traveled with little dispersion. 4. Discussion and Conclusion [20] It is noted that the atmospheric boundary waves, once excited, travel in the atmosphere significantly faster than the tsunami waves in the ocean. In addition, they retain the original shape of the tsunami, because they are little dispersive. [21] When JMA issues a tsunami early warning to the public, JMA forecasts initially the tsunami height based on the hypocenter location and the magnitude of the earthquake without using the information about the tsunami source area and actual initial height in the source region [Kamigaichi, 2011]. Therefore, tsunami warnings do not reflect the real tsunami height until the actual tsunami height is measured by various types of tsunami gauges along or near the coast. Establishment of a network of infrasound observation along the coast line facing the subduction zone would improve the tsunami warning system, because it would provide information on the tsunami source. Feasibility study on applying our scientific discoveries to the tsunami warning system shall be done in the future. [22] Acknowledgments. We wish to thank Y. Tamura for providing the barograph data observed at Mizusawa VLBI Observatory, National Astronomical Observatory of Japan. [23] The Editor wishes to thank two anonymous reviewers for their assistance evaluating this paper. References Arai, N., T. Murayama, M. Iwakuni and M. Nogami (2009), An approach for de noising waveform data by auto regressive algorithm, in 2009 Monitoring Research Review: Ground Based Nuclear Explosion Monitoring Technologies, pp. 761 770, Natl. Nucl. Secur. Adm., Washington, D. C. Cook, R. K. (1971), Infrasound radiated during the Montana earthquake of 1959 August 18, Geophys. J. R. Astron. Soc., 26, 191 198, doi:10.1111/ j.1365-246x.1971.tb03393.x. Fujii, Y., K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa (2011), Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63(7), 815 820. Kajiura, K. (1970), Tsunami source, energy and the directivity of wave radiation, Bull. Earthquake Res. Inst. Univ. Tokyo, 48, 835 869. Kamigaichi, O. (2011), Tsunami forecasting and warning, in Extreme Environmental Events, edited by R. A. Meyer, pp. 982 1007, Springer, New York, doi:10.1007/978-1-4419-7695-6_52. Le Pichon, A., P. Herry, P. Mialle, J. Vergoz, N. Brachet, M. Garcés, D. Drob, and L. Ceranna (2005), Infrasound associated with 2004 2005 large Sumatra earthquakes and tsunami, Geophys. Res. Lett., 32, L19802, doi:10.1029/2005gl023893. Le Pichon, A., E. Blanc, and A. Hauchecorne (2010), Infrasound Monitoring for Atmospheric Studies, Springer, Dordrecht, Netherlands. Maeda, T., T. Furumura, S. Sakai, and M. Shinohara (2011), Significant tsunami observed at the ocean bottom pressure gauges at 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, in press. Mikumo, T. (1968), Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964, J. Geophys. Res., 73, 2009 2025, doi:10.1029/jb073i006p02009. Mikumo, T., T. Shibutani, A. Le Pichon, M. Garces, D. Fee, T. Tsuyuki, S. Watada, and W. Morii (2008), Low frequency acoustic gravity waves from coseismic vertical deformation associated with the 2004 Sumatra Andaman earthquake (Mw = 9.2), J. Geophys. Res., 113, B12402, doi:10.1029/2008jb005710. Sleeman, R., and T. van Eck (1999), Robust automatic P phase picking: An on line implementation in the analysis of broadband seismogram recordings, Phys. Earth Planet. Inter., 113, 265 275, doi:10.1016/s0031-9201 (99)00007-2. Tsugawa, T., A. Saito, Y. Otsuka, M. Nishioka, T. Maruyama, H. Kato, T. Nagatsuma, and K. T. Murata (2011), Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63(7), 875 879. Watada, S. (2009), Radiation of acoustic and gravity waves and propagation of boundary waves in the stratified fluid from a time varying bottom boundary, J. Fluid Mech., 627, 361 377, doi:10.1017/ S0022112009005953. Watada, S., and H. Kanamori (2010), Acoustic resonant oscillations between the atmosphere and the solid earth during the 1991 Mt. Pinatubo eruption, J. Geophys. Res., 115, B12319, doi:10.1029/2010jb007747. Watada, S., T. Kunugi, K. Hirata, H. Sugioka, K. Nishida, S. Sekiguchi, J. Oikawa, Y. Tsujii, and H. Kanamori (2006), Atmospheric pressure change associated with the 2003 Tokachi Oki earthquake, Geophys. Res. Lett., 33, L24306, doi:10.1029/2006gl027967. N. Arai, M. Iwakuni, T. Murayama, and M. Nogami, Japan Weather Association, 3 1 1 Higashi Ikebukuro, Toshima ku, Tokyo 170 6055, Japan. (arai@jwa.or.jp) Y. Imanishi and S. Watada, Earthquake Research Institute, University of Tokyo, 1 1 1 Yayoi, Bunkyo ku, Tokyo 113 0032, Japan. 5of5