ECEN 326 Electronic Circuits

Similar documents
ECEN 326 Electronic Circuits

ECEN 325 Electronics

Lecture 37: Frequency response. Context

ECEN 325 Electronics

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Exact Analysis of a Common-Source MOSFET Amplifier

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

ECE 546 Lecture 11 MOS Amplifiers

Lecture 090 Multiple Stage Frequency Response - I (1/17/02) Page 090-1

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

The Miller Approximation

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Multistage Amplifier Frequency Response

EE105 Fall 2014 Microelectronic Devices and Circuits

Electronics II. Final Examination

I. Frequency Response of Voltage Amplifiers

Chapter 9 Frequency Response. PART C: High Frequency Response

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Advanced Current Mirrors and Opamps

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

University of Toronto. Final Exam

CE/CS Amplifier Response at High Frequencies

6.012 Electronic Devices and Circuits Spring 2005

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Circle the one best answer for each question. Five points per question.

Electronic Circuits Summary

Amplifiers, Source followers & Cascodes

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Lecture 120 Compensation of Op Amps-I (1/30/02) Page ECE Analog Integrated Circuit Design - II P.E. Allen

Bipolar junction transistors

Circuit Topologies & Analysis Techniques in HF ICs

Homework Assignment 08

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Voltage AmpliÞer Frequency Response

ECE 255, Frequency Response

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model

Refinements to Incremental Transistor Model

ESE319 Introduction to Microelectronics. Feedback Basics

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Stability and Frequency Compensation

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

Homework Assignment 09

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

OPERATIONAL AMPLIFIER APPLICATIONS

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

55:041 Electronic Circuits The University of Iowa Fall Exam 2

6.2 INTRODUCTION TO OP AMPS

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

MICROELECTRONIC CIRCUIT DESIGN Second Edition

EECS 105: FALL 06 FINAL

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

Integrated Circuit Operational Amplifiers

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

The BJT Differential Amplifier. Basic Circuit. DC Solution

At point G V = = = = = = RB B B. IN RB f

Switching circuits: basics and switching speed

Stability of Operational amplifiers

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Charge-Storage Elements: Base-Charging Capacitance C b

Lecture 28: Single Stage Frequency response. Context

Biasing the CE Amplifier

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

Chapter 13 Small-Signal Modeling and Linear Amplification

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Sample-and-Holds David Johns and Ken Martin University of Toronto

Half-circuit incremental analysis techniques

55:041 Electronic Circuits The University of Iowa Fall Final Exam

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Electronics II. Midterm #1

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS

EE 330 Lecture 31. Current Source Biasing Current Sources and Mirrors

ECE 6412, Spring Final Exam Page 1

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

Homework Assignment 11

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Practice 7: CMOS Capacitance

ECE Analog Integrated Circuit Design - II P.E. Allen

LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

EE C245 ME C218 Introduction to MEMS Design

EE221 Circuits II. Chapter 14 Frequency Response

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS

VLSI Design and Simulation

EE221 Circuits II. Chapter 14 Frequency Response

Electronics II. Midterm II

Design of Analog Integrated Circuits

The Common-Emitter Amplifier

Transcription:

ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering

High-Frequency Model BJT & MOS B or G r x C f C or D r in v C in g m v g mb v 2 r o v 2 B E or S General BJT MOS r x r b 0 r in r π C in C π C gs C f C µ C gd r o r o r o g m g m g m g mb 0 g mb ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response

BJT & MOS Capacitances Active BJT: C π = C b + C je = τ F g m + C je C µ = C µo V ψ o n C π C µ MOS: C gs = 2 3 WLC ox C gd : Overlap capacitance C gs C gd ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 2

Transition Frequency, f T BJT & MOS i o i o i i i i r x C f i i r in v C g m v in r o io i o i i (s) g m r in + r in (C in + C f )s ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 3

Transition Frequency, f T BJT & MOS i o i i (jω) g m r in + r in (C in + C f )jω At high frequencies: i o i i (jω) g m (C in + C f )jω i o (jω) = i i ω=ω T g m (C in + C f )ω T = ω T = g m C in + C f, f T = ω T 2π BJT: ω T = g m C π + C µ MOS: ω T = g m C gs + C gd ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 4

BJT-CE & MOS-CS Small-signal circuit V o V o V i V i v i R S r x C f v o r in v C in g m v r o R L ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 5

BJT-CE & MOS-CS Transfer function v o v i (s) = K s C f g m + a s + a 2 s 2 K = g mr OL R + r x = g m R OL r in + r x + r in a = C f R OL + C f R + C in R + g m R OL RC f a 2 = R OL RC f C in R = ( + r x ) r in R OL = r o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 6

BJT-CE & MOS-CS Poles & zeros D(s) = + a s + a 2 s 2 = s p s p 2 p 2 p p a, p 2 a a 2 p = R C in + C f + g m R OL + R OL R p 2 = + + + g m R OL C f RC in R OL C in C in N(s) = s z z = g m C f ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 7

Miller Approximation Z x V i A V o Z i Z i = V i I i = V i V i V o Z x = V i V i ( AV i ) Z x = Z xv i (A + )V i = Z x A + Z x = sc Z i = s(a + )C = sc, C = (A + )C ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 8

Miller Capacitance +r x C f v i v o r in v C in v g m r o Miller Approximation v i +r x v o r in v C in C M v g m r o C M = (A + )C f, A = v o v = g m (r o ) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 9

BJT-CE & MOS-CS Approximate solution v i +r x v o r in v C in +C M v g m R OL v o v i = g m R OL r in s(c in + C M ) + r x + r in s(c in + C M ) = g m R OL r in + r x + r in + s(c in + C M )R R = ( + r x ) r in, R OL = r o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 0

Approximate vs. Exact Solution Miller approximation: Exact derivation: p = R(C in + C f ( + g m R OL )) p = R C in + C f + g m R OL + R OL R p 2 = + + + g m R OL C f RC in R OL C in z = g m C f C in ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response

BJT-CE Poles & zeros p = (( + r b ) r π ) C π + C µ + g m R OL + R OL R p 2 = z = g m C µ + + + g m R OL C µ RC π R OL C π C π ω T = g m C π + C µ p 2 p, p 2 > ω T, z > ω T ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 2

MOS-CS Poles & zeros p = p 2 = z = g m C gd C gs + C gd + g m R OL + R OL + + R OL C gd C gs R OL C gs + g m C gs ω T = g m C gs + C gd p 2 p, p 2 > ω T, z > ω T ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 3

BJT & MOS Differential Pair DM v id 2 v od 2 v id 2 v od 2 Dominant pole of v od v id (s) : p = R C in + C f + g m R OL + R OL R R = ( + r x ) r in, R OL = r o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 4

BJT & MOS Differential Pair CM v ic v oc v ic v oc 2R T C T /2 2RT /2 C T A cm (s) Z T, Z T = 2R T sc T /2 = 2R T + sc T R T A cm (s) 2R T ( + sc T R T ) ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 5

BJT & MOS Differential Pair CMRR A cm db A dm db +20 db/dec ω log scale 20 db/dec ω R T C T CMRR db ω log scale ω 2 R(C in + C M ) ω ω 2 ω log scale ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 6

BJT-CC & MOS-CD Small-signal circuit V i V i V o V o v i r x r in v C in g m v r o g mb v o ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 7

BJT-CC & MOS-CD Transfer function v o v i (s) = g m R L + R L r in + g m R L + R S + R L r in p = g m + r, z = in R C in C in R S = + r x R L = r o g mb R = r in R S + R L + g m R L s z s p ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 8

BJT-CC Poles & zeros z = g m + r π C π g m C π ω T p = R C π, R = r π R S + R L + g m R L R S = + r b, R L = r o Typically, z is slightly larger than p. If g m R L and R S R L, then R /g m and p ω T. If R S is large (compared to R L ), then p will be significantly less than ω T. ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 9

MOS-CD Poles & zeros z = g m C gs ω T p = R C gs, R = + R L + g m R L R L = r o g mb Typically, z is slightly larger than p. If g m R L and R L, then R /g m and p ω T. If is large (compared to R L ), then p will be significantly less than ω T. ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 20

BJT-CC & MOS-CD Input impedance r x r x Z i r in v C in g m v Z i (+ g ) m r in Cin +g m Z i = r x + R sc + R L R = ( + g m R L )r in, C = R L = r o g mb C in + g m R L ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 2

BJT-CC & MOS-CD Input impedance BJT: Z i = r b + R sc + R L R = ( + g m R L )r π, C = R L = r o C π + g m R L MOS: Z i = sc + R L C gs C = + g m R L R L = r o g mb ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 22

BJT-CC & MOS-CD Output impedance v o r in v C in g m v Z o v = z in z in + R v o, z in = r in S sc in Z o = (z in + R S ) z in + R S R L g m z = in R S = + r x, R L = r o g mb z in + R S + g m z in R L ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 23

BJT-CC & MOS-CD Output impedance Z o = R L r in + R S + sc in (R S r in) + g m r in + sc in r in g m > R S g m < R S g m = R S g m Z o is capacitive Z o is inductive Z o is resistive Practical design goals: r x, g m = ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 24

BJT-CC & MOS-CD Output impedance BJT: Z o = r o r π + + r b β + + sc π (( + r b ) r π ) + sc π r π g m MOS: Z o = r o g mb + sc gs g m + s C gs g m ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 25

BJT-CB & MOS-CG Small-signal circuit V i V o V i V o g mb v g m v i o v o v i =i i v r in C in C f ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 26

BJT-CB & MOS-CG Transfer function i o i i (s) = K s p v o v i (s) = K s p s p 2 K = g m + g mb g m + g mb + + r in g m + g mb + + R p = S r in, p 2 = C in C f ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 27

BJT-CB & MOS-CG Poles BJT: v o v i (s) = g m g m α + s p s p 2 p = g m α + C π, p 2 = C µ MOS: v o v i (s) = g m + g mb g m + g mb + s p s p 2 p = g m + g mb + C gs, p 2 = C gd ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 28

Multistage Amplifiers Dominant-pole approximation A(s) = = K + b s + b 2 s 2 + + b n s n s p K s p 2 s p n If p p 2, p 3,... then b p b = The higher 3-dB frequency is n i= p i, A(jω) + K ω p 2 ω H p b ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 29

Open-Circuit Time Constant Analysis Also known as Zero-Value Time Constant Analysis. Can be used to estimate the higher 3-dB frequency (ω H ). C C n C2 Circuit with no capacitors C 3 Circuit with no capacitors v k C k C 4 ik R ko R ko = v k, T ko = R ko C k i k n b = R koc k = R o C + R 2o C 2 + + R no C n k= ω H p b T ko k ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 30

Short-Circuit Time Constant Analysis Can be used to estimate the lower 3-dB frequency (ω L ) of ACcoupled amplifiers. C C n C2 Circuit with no capacitors C 3 Circuit with no capacitors v k C k C 4 ik R ks R ks = v k, τ ks = R ks C k i k ω L n k= τ ks ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 3

Short-Circuit Time Constant Analysis Can be used to estimate the nondominant pole (p 2 ) in DCcoupled amplifiers that have only two widely-spaced real poles. C 2 C Circuit with no capacitors Circuit with i v no capacitors R s R ks = v k i k, τ ks = R ks C k, k =, 2 p 2 2 k= τ ks ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 32

Cascode Frequency Response v o v o Q 2 M 2 v i Q v i M ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 33

Differential Pair Current mirror load V DD M 3 M 4 V o V M M 2 id V id I T 2 2 C x v gs4 gm3 i o g m4 v gs4 V id 2 v g m v g m2 v 2 v 2 V id 2 ECEN 326 Electronic Circuits - Aydın İ. Karşılayan - Frequency Response 34