Variational Equation or Continuous Dependence on Initial Condition or Trajectory Sensitivity & Floquet Theory & Poincaré Map

Similar documents
Phase plane method is an important graphical methods to deal with problems related to a second-order autonomous system.

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

1973 AP Calculus BC: Section I

Continous system: differential equations

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

Chapter 3 Linear Equations of Higher Order (Page # 144)

( A) ( B) ( C) ( D) ( E)

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Unsteady flows in moving reference frame

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Linear Systems Analysis in the Time Domain

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

P a g e 5 1 of R e p o r t P B 4 / 0 9

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Numerical methods for ordinary differential equations

ECE 350 Matlab-Based Project #3

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU MATHEMATICS. FORMULA BOOKLET (New Specification)

ECSE Partial fraction expansion (m<n) 3 types of poles Simple Real poles Real Equal poles

A L A BA M A L A W R E V IE W

Review Answers for E&CE 700T02

Dynamics of Bloch Electrons 1

SUMMATION OF INFINITE SERIES REVISITED

Control Systems. Transient and Steady State Response.

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Numerical Method for Ordinary Differential Equation

Example: Two Stochastic Process u~u[0,1]

A Dash of Maxwell s. A Maxwell s Equations Primer. Chapter V Radiation from a Small Wire Element

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

An Asymptotic Expansion for the Non-Central Chi-square Distribution. By Jinan Hamzah Farhood Department of Mathematics College of Education

Section 8 Convolution and Deconvolution

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

K3 p K2 p Kp 0 p 2 p 3 p

EE757 Numerical Techniques in Electromagnetics Lecture 8

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

SHAPE DESIGN SENSITIVITY ANALYSIS OF CONTACT PROBLEM WITH FRICTION

Gavilan JCCD Trustee Areas Plan Adopted November 10, 2015

2011 HSC Mathematics Extension 1 Solutions

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

SHINGLETON FOREST AREA Stand Level Information Compartment: 44 Entry Year: 2009

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig.

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

ALU. Announcements. Lecture 9. Pipeline Hazards. Review: Single-cycle Datapath (load instruction) Review: Multi-cycle Datapath. R e g s.

, University. 1and. y T. since. g g

Fourier Series: main points

+ γ3 A = I + A 1 (1 + γ + γ2. = I + A 1 ( t H O M E W O R K # 4 Sebastian A. Nugroho October 5, 2017

Dielectric Waveguide 1

1. The dielectric function ( ) of materials

Math 2414 Homework Set 7 Solutions 10 Points

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

Quality Monitoring Calibration Assuring Standardization Among Monitors

Supplementary Information for Thermal Noises in an Aqueous Quadrupole Micro- and Nano-Trap

12 th Mathematics Objective Test Solutions

Processamento Digital de Sinal

ME 3210 Mechatronics II Laboratory Lab 6: Second-Order Dynamic Response

The universal vector. Open Access Journal of Mathematical and Theoretical Physics [ ] Introduction [ ] ( 1)

EE Control Systems LECTURE 11

Integrated Optical Waveguides

Consider the time-varying system, (14.1)

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

T h e C S E T I P r o j e c t

Chapter 4 Circular and Curvilinear Motions

The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

ELEC9721: Digital Signal Processing Theory and Applications

A New Skew Linear Interpolation Characteristic Difference Method for Sobolev Equation

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Supplementary Information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

NAME: SOLUTIONS EEE 203 HW 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

MAE143A Signals & Systems - Homework 2, Winter 2014 due by the end of class Thursday January 23, 2014.

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

EXERCISE - 01 CHECK YOUR GRASP

Degree of Approximation of Fourier Series

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

ECE-314 Fall 2012 Review Questions

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

6.2 Improving Our 3-D Graphics Pipeline

14.02 Principles of Macroeconomics Fall 2005

Exercises for lectures 23 Discrete systems

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

Partial Fraction Expansion

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL

Analytical Evaluation of Multicenter Nuclear Attraction Integrals for Slater-Type Orbitals Using Guseinov Rotation-Angular Function

BMM3553 Mechanical Vibrations

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter R Notes. Convolution

Transcription:

Vaiaioal Equaio o Coiuous Dpc o Iiial Coiio o Tajco Ssiivi & Floqu Tho & Poicaé Map. Gal ia o ajco ssiivi.... Homogous Lia Tim Ivaia Ssm...3 3. No - Homogous Lia Tim Ivaia Ssm...3 Eampl (LTI:.... Homogous Lia Tim Vaig Ssm...5 Eampl (LTV:...5 5. No Homogous Lia Tim Vaig Ssm...6 6. Nolia ssm...6 Eampl 3 (NL:...6 Summa...8 7. Sabili Aalsis...9 Summa:... 8. Floqu Tho... Summa... 9. Poicaé Map... Ovall Summa:...3 Eampl: Poicaé Map vs Floqu Tho.... Iiial umical aalsis.... Pola Cooias...6. Equilibia a soluio o ssm i pola cooias...7. Poica map a Jacobia om pola cooias...7 3. Casia cooias...9 3. Soluio i Casia cooias...9 3. Jacobia i Casia cooias... 3.3 Pubaio calculaio usig h Jacobia... Floqu Tho...3. Jacobia aou h pioic obi...3 5. Soluio o Mai Diial Equaio... 5. Calculaio o Mooom mai... 5. Pubaio calculaio usig h Mooom mai...6 /7

. Gal ia o ajco ssiivi Assum a soluio ( o a IVP How will h obi bhav i w sa v clos o i? δ ( δ ( δ ( δ ( δ W i: ( Figu a. δ ( δ ( Δ( b. Δ δ Now w hav o pss δ δ 3 Δ TS Δ as a ucio o h oigial pubaio: ( Δ δ δ Δ ( This is h vaiaioal quaio. Fo w hav ha Δ ( ( ( ( Δ I /7

So i w wa o s h ssiivi o h ICs w o i. Homogous Lia Tim Ivaia Ssm I w hav a lia ssm ( A & h h soluio is: A( (. Th o cous: A( ( Noic ha hough ha las quaio w ca giv aoh iiio o h STM (i his poial mai: h paial ivaiv o h soluio w h iiial coiio: A( Thus: Δ Δ( 3. No - Homogous Lia Tim Ivaia Ssm I w hav a lia ssm ( A BU & h h soluio is: A( A ( τ BU ( τ τ Th o cous: ( A( (3 A( Thus: Δ Δ( (s ampl i h ollowig pag 3/7

Eampl (LTI: % iiial clc cla clos sms au ; ; A[ -; 3]; B[;]; Usi(;Uausi(au; % omial obi [.;.]; solpm(a*(-*i(pm(a*(au*b*uauau; c; :.:.5; o ; sol(c:subs(sol; cc; % pub obi [.;.].5; solpm(a*(-*i(pm(a*(au*b*uauau; c; :.:.5; o ; sol(c:subs(sol; cc; % plo h ic subplo( plo(sol(:-sol(:sol(:-sol(: lim([mi(sol(:-sol(: ma(sol(:- sol(:] % Calcula h i D[.5;.5]; Jpm(A*(-; c; :.:.5; o ; D(c:subs(J*D; cc; subplo( plo(d(:d(:'' lim([mi(d(: ma(d(:].... - -5 - -5-3 - -5 - -5 5-3 /7

. Homogous Lia Tim Vaig Ssm I w hav a lia ssm &( A a hc o cous Φ Th h soluio is ( STM ( Φ STM ( To i ow his STM w hav o umicall solv: A Φ STM Φ STM I Φ STM Noic ha hough ha las quaio w ca giv aoh iiio o h STM (i his cas: h paial ivaiv o h soluio w h iiial coiio: Eampl (LTV: Figu 5/7

5. No Homogous Lia Tim Vaig Ssm Th aalsis h is acl h sam as bo so o ampls a giv. 6. Nolia ssm I w hav a olia ssm: ( I I Jacobia Y τ τ τ τ τ τ τ τ τ τ τ τ 3 3 Now h RHS mus b qual o h LHS o which mas ha I. Also i a lia ssm ( A which mas agai ha is ohig mo ha h STM. Eampl 3 (NL: Cosi h ssm. Th umical soluio o ( a ( is: 6/7

.8.6.. - -.5.5 Figu 3 Th Jacobia is: 3 3 alog h obi ( i o o i h STM: which s o b valua ( ( I Th Jacobia is: Hc a s h STM has h valu: Figu >> [DPA' DPB'] as -.76995887 -.999768579.66536335 -.6683657 7/7

So l s a a small pubaio Δ a s o b:.. ( a I pc h pubaio >> [DPA' DPB']*[.;.] as -.8668883 -.856393978 oigial To Wokspac To Wokspac oigial >> [; ] as -.83636785 -.8667735 Summa 8/7

So o summais: To i how h pubaios volv w us: Δ Δ Thus w which is h STM. Hc o i h STM: ( o Fo LTI ssms A o Fo LTV ssms Φ STM A Φ STM ( Φ STM I o Fo NL ssms agai solv h pvious quaio bu ow ( ( A. ( 7. Sabili Aalsis Now l s assum ha w hav a pioic obi h w ca sill appl h pvious mho a w ca o i h pubaios usig: Δ Δ o Δ ( Φ Δ Noic ha w us Φ isa o Φ as i h gal olia cas ma sill b a ucio o. This mai ow ca b ou b solvig Φ STM ( Φ STM ( Φ STM ( I L s valua h abov pubaios a T: Δ ( T Φ( T Δ( Th w call h mai ccl. ( T Φ h Mooom Mai (MM o h limi 9/7

( ( ( ( ( T Φ ( T Δ( Δ T Φ T Δ T Now Δ T Φ T Φ T Δ Δ A also Δ ( T Φ( T Δ( Thus w immial s ha Φ( T Φ ( T ha: Δ Φ ( kt Φ T k ( k ( kt Φ ( T Δ ( o ha which implis k Usig igvalu composiio: Δ( kt U Λ UΔ( Which implis ha i h all igvalus o h mooom mai hav absolu valu lss ha h obi is sabl. Summa: So o summais: Δ ( Thus w ( Δ ( Hc o i h STM: o Fo LTI ssms which is h STM. ( A( o Fo LTV ssms Φ STM A Φ STM ( Φ STM I o Fo NL ssms agai solv h pvious quaio bu ow ( ( A. ( Evalua h STM a T 8. Floqu Tho Aoh wa o s h abov is o liais aou h limi ccl: /7

& & & ( ( p ( ( ( ( Δ( ( & ( Δ p ( p ( ( ( ( ( ( ( ( ( ( ( p p p Δ Δ ( ( p p Δ ( Which i h pvious oaio his ca b wi as: Δ ( ( Δ ( ( Φ STM Δ( a hus h soluio is: Δ which agai implis ha Φ STM ( ( ( Φ ( ( STM ( a ha a ha ( I Φ STM. Hc w hav a simila quaio o h o bo a hc w g h sam sul. Thus o i h sabili popis w hav o i h mooom mai a ach igvalus. Summa: Liais h ssm aou h pioic obi a hc pss h pubaios hough a LTV iial quaio To solv ha w h STM which ca b ou b solvig a mai iial quaio: ( ( Φ STM Φ STM Φ ( Th sabili is ou b valuaig Φ STM a T. I STM /7

9. Poicaé Map Goig back o h gal soluio o a olia (i ca also b lia ssm: ( ( ( τ τ τ Now h soboscopic Poica map is ohig mo ha: T T T T FP ( ( τ FP τ τ FP ( τ FP τ τ ( T ( ( τ τ τ P( ( ( τ τ Th i poi is τ Th sabili aalsis is simila o h pvious cas: P T ( FP ( ( τ τ I ( τ FP ( τ τ Hc h mooom mai is ohig mo ha h Jacobia o h Poicaé map! Uoual agai i h gal cas w hav o umicall solv h mai iial quaio: ( ( o [ T ] FP FP FP FP Summa:. Evalua h soluio a T im: ( T Th sabili ca b ou om To calcula his agai w hav o solv a mai iial quaio.. /7

Ovall Summa:.. I all cass w sa om assumig ha w hav h soluio. Epss h pubaios as: Δ Δ( 3. To i Φ STM solv h mai DE: Φ STM A Φ STM ΦSTM ( I. Th soluio o h abov quaio will giv Φ a hc w ca g h MM: Φ ( T mi h sabili as Δ ( kt STM k Δ 5. Fo h Floqu Tho w mus is iv pss ( ( Δ ( ( Δ Δ ( Δ. ( 6. Fo h Poica map i is acl h sam as bo bu ow w wi icl: ( T STM. Th igvalus o his will which is LTV a hc w h STM o ( T Δ. ( Δ Thus Th Floqu Tho s a a sp ha h Tajco Ssiivi Th Poicaé map is jus a spcial cas o h Tajco Ssiivi 3/7

Eampl: Poicaé Map vs Floqu Tho. Iiial umical aalsis A ssm is giv b Th EPs a: ( Fom h s q: ( ( A b placig ha a h q: ( ( ( ( which is icosis Hc h is ol o quilibium poi a h oigi. Th ssm has a sabl limi ccl as i ca b s b is umical simulaio..8.6.. -. -. -.6 -.8 - - -.8 -.6 -. -....6.8 To su h ssm w ca us pola cooias: cos( θ which will giv: a θ a si( θ /7

6 8 6 8..9.8.7.6.5..3.. 3 - - -3-6 8 6 8 5/7

. Pola Cooias Ls calcula h mol i pola cooias: ( ( ( ( ( ( cos( θ Also so Hc si( θ ( ( ( ( ( ( ( ( ( ( ( ( ( ( A θ a θ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 6/7

So h ssm i pola cooias is: ( Simulik valia his as wll. θ -u(u(*(-u(^-u(^ MATLAB Fucio s sq(u(^u(^ MATLAB Fc u(u(*(-u(^-u(^ Igao MATLAB Fucio MATLAB Fc MATLAB Fucio MATLAB Fc s Igao aa(u(/u( MATLAB Fucio MATLAB Fc3 ha Zo-O Hol. Equilibia a soluio o ssm i pola cooias Th quaio has o EP bu h is has a: ( 3 : Th Jacobia is ( 3. So h oigi is usabl a is : sabl. Th ODE i pola cooias ca b solv a w hav: θ θ θ So w ca s ha h agl θ will coiuousl icas whil h ampliu will covg o.. Poica map a Jacobia om pola cooias Bu gaig h oigial ssm h cosi/si o h agl will b pioic o pio a as h ampliu will covg o a sa sa valu h his implis ha h ssm will hav a limi ccl which will b a pc cicl o aius c a h oigi a a pio o. 7/7

So i w sa a h h poi a o pio (Poica map is: P which ca b wi as: P To i h i poi: As h FP is h h Jacobia a ha poi is: 3 3 3 3 P P A hc: 3.8 6 < P a hc i is sabl. O ha simpl h pubaios aou h i poi a giv b: Δ Δ which has b cosschck usig Simulik. To o ha I simula h oigial ssm a a h sam ssm wih. a I sampl hi ic wih T. Th I simula h Δ Δ wih iiial coiio -.9. a I compa h pvious ic a ha oupu. Th small h IC h small hi ic: 8/7

3. Casia cooias 3. Soluio i Casia cooias Now l s i h soluio i h - pla: ( ( ( ( si cos si cos si cos si cos θ θ θ 9/7

This has b valia b Simulik. I.. I simula h pvious s o quaios ha giv aalical soluio a compa ha wih h umical ha I g om Simulik. Th o was -. I I o o assum ha θ : a si a cos a si cos si cos θ θ θ θ θ θ 3. Jacobia i Casia cooias Now l s i h Poica map i h - omai: /7

cos a P si a Th Jacobia o ha is ah cumbsom so I will us Malab clc cla sms T ^^; a(/-; ba*p(*t; ba*p(-*t; c/sq(b; a/; haa(at; c*cos(h; c*si(h; Di(; Di(; Di(; Di(; Dsubs(D{T}{*pi}; Dsubs(D{T}{*pi}; Dsubs(D{T}{*pi}; Dsubs(D{T}{*pi}; DF[D D; D D] ig(df DF.387336. -.. W g igvalus:.387336. Th s o is h sam as h o ha w go om h pola cooias a is om h ac ha h ssm is auoomous. Noic ha w coul hav calcula h Jacobia i w ha solv ( ( o [ T ] FP FP FP FP 3.3 Pubaio calculaio usig h Jacobia /7

>> DF*[.;.] as.-3 *.387336. -u(u(*(-u(^-u(^ MATLAB Fucio MATLAB Fc s Igao u(u(*(-u(^-u(^ MATLAB Fucio s MATLAB Fc Igao Subac Scop -u(u(*(-u(^-u(^ MATLAB Fucio MATLAB Fc u(u(*(-u(^-u(^. s Igao -.955-7.999 Displa MATLAB Fucio MATLAB Fc3 s Igao3. No: I I i o kow h IC o h Poica map i.. is i poi I hav o us a Nwo Rapsho mho. /7

Floqu Tho. Jacobia aou h pioic obi So ow I hav a olia ssm wih a sabl pioic obi wih T6.8 a also I kow is soluio. Now I will o us h Floqu Tho. Th olia vco il is: ( a hc So h Jacobia aou h obi is: ( 3 3 3 3 which will giv: 3 3 Now his mus b valua aou h obi: ( ( si cos saig o h poi as his is a poi o h ccl. ( ( ( ( p p si cos so: ( ( ( ( ( ( 3si cos si cos si cos si 3cos P O: 3/7

cos( cos si cos si cos( si( cos( si( si( cos( cos( si( cos( si( si( P P cos( si( si si P Fo o T6.8 Th lms o h Jacobia mai a: 5. Soluio o Mai Diial Equaio 5. Calculaio o Mooom mai I o o i h mooom mai I o o solv h MDE: Φ ( Φ Φ A Wih h IC I P ( Φ Th ollowig mol will calcula h mai A om o T. /7

si Clock Gai Tigoomic Fucio -K- Gai5 -K- Gai6 Pouc Mai Mulipl si Tigoomic Fucio u Mah Fucio - Gai -K- Gai s Igao Pouc Mai Mulipl DP To Wokspac cos Tigoomic Fucio u Mah Fucio - Gai -K- Gai3 s Igao DP To Wokspac >> DP[DP' DP'] DP.387336 -...99999999999983 Noic ha his sul is v clos o h o ha w go om h Poica Map. Now ha h mooom mai is ou w ca i h Floqu muliplis: >> ig(dp as.387336.99999999999983 Which a v clos o h os om h PM. Aoh wa o o ha is o umicall solv h oigial ssm a h o us h 3 umical soluio o wih 3 ( cos (. si I is impoa hough o mmb ha h ssm mus sa om. 5/7

s oigial Pola I MATLAB Fucio -K- [] Jacobia o Poica I Numical o aaliic MATLAB Fc MATLAB Fucio -K- Gai7 [] [] Pouc3 [] Mai M ulipl MATLAB Fc3 Gai8 [] MATLAB [] -K- [] Fucio MATLAB Fc Gai9 [] [] s Igao Pouc [] Mai M ulipl DPA To Wokspac MATLAB Fucio MATLAB Fc [] -K- Gai s DPB To Wokspac3 Igao3 Clock Gai si Tigoomic Fucio -K- [] Gai5 [] -K- Gai6 [] si Tigoomic Fucio u Mah Fucio - Gai [] -K- Gai [] [] [] [] s Igao Pouc [] Mai Mulipl Pouc [] Mai Mulipl DP To Wokspac cos Tigoomic Fucio u Mah Fucio - Gai [] -K- Gai3 s Igao DP To Wokspac >> ig(dpa as.387336. Hc w g h sam suls. 5. Pubaio calculaio usig h Mooom mai So I hav ou Φ ow I will us his mai o pov ha Δ( Φ Δ b kowig ha Δ [.. So o.t I hav go om h NL ssm:.5783.86895965869 A om h pouc >> E[DP' DP']*[.;] E.3539573.6789936 ] Ths a i a v goo agm. 6/7

7/7