Recent results and status of the

Similar documents
Ness LUNA II facility. INFN underground Gran Sasso Laboratories. P. Corvisiero INFN - Italy

Underground nuclear astrophysics and the Sun

Nuclear Astrophysics Underground Status & Future

Experimental study of the 14 N(p,γ) 15 O reaction

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment

Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest

Latest results from LUNA

The LUNA - MV project at the Gran Sasso Laboratory

at Gran Sasso Laboratories, Italy

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

arxiv: v1 [nucl-ex] 4 Feb 2009

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova

LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

Hands on LUNA: Detector Simulations with Geant4

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment

STUDY OF THE RESONANCES AT 417, 611, AND

Neutrino physics and nuclear astrophysics:

arxiv:nucl-ex/ v1 9 Feb 2006

Perspectives on Nuclear Astrophysics

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA

The 3 He(α, γ ) 7 Be S-factor at solar energies: The prompt γ experiment at LUNA

Timing resolution measurement of a 3 Lanthanum Bromide detector

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

Lifetime measurement of the MeV state in 15O with the AGATA Demonstrator

Hydrogen & Helium Burning in Stars

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

arxiv:nucl-ex/ v2 17 May 2004

Primer: Nuclear reactions in Stellar Burning

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

Reaction rates in the Laboratory

Analyzing power measurement for the 14 N p, 15 O reaction at astrophysically relevant energies

Metallicities in stars - what solar neutrinos can do

arxiv: v1 [nucl-ex] 29 Nov 2017

Stellar Evolution: what do we know?

(EXPERIMENTAL) NUCLEAR ASTROPHYSICS. study energy generation processes in stars study nucleosynthesis of the elements

Experimental setup. Alpha beam. Deuterium exhaust. - Germanium detector close to the beam line to. increase the detection efficiency

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

arxiv: v1 [nucl-ex] 18 Nov 2016

High precision neutron inelastic cross section measurements

New results of CUORICINO on the way to CUORE

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

E1 strength of the subthreshold 3/2 + state in 15 O studied by Coulomb excitation

Práctica de laboratorio número 6: Non-Rutherford scattering near the MeV 12 C(p,p) 12 C resonance

LUNA: a Laboratory for Underground Nuclear Astrophysics. Dipartimento di Scienze Fisiche, Universitá Federico II, Napoli, and INFN Napoli, Italy

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

The LUNA experiment at the Gran Sasso Laboratory

1. Neutrino Oscillations

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Observation of flavor swap process in supernova II neutrino spectra

Beam Dump Experiments with Photon and Electron Beams

F. Cappella INFN - LNGS

Future research of 12 C(a,g) 16 O. Claudio Ugalde

Search for the η e + e - decay at the SND detector

Absolute cross section of 7 Be(p, γ ) 8 B

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

arxiv: v1 [nucl-ex] 16 Feb 2012

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

arxiv: v1 [nucl-ex] 30 Sep 2008

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

ICARUS T600 experiment: latest results and perspectives

Measurements of the Astrophysically Important 40 Ca(α,γ) 44 Ti Reaction Rate. Daniel Robertson JINA Frontiers Meeting Oct.

Publications of Francesco Arneodo: journal articles

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

arxiv:hep-ph/ v1 30 Nov 2005

arxiv: v1 [hep-ex] 22 Jan 2009

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Dark matter search with the SABRE experiment

Status of Cuore experiment and last results from Cuoricino

Compton suppression spectrometry

The First Results of K2K long-baseline Neutrino Oscillation Experiment

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE

The CNGS neutrino beam

The KATRIN experiment

Radioactivity measurements for the ERMES project at the STELLA facility

New half-live results on very long-living nuclei

Proton Radius Puzzle and the PRad Experiment at JLab

Radio-chemical method

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Measurements of the Cross Section for the Process γγ pp at s ee = GeV with the OPAL Detector at LEP

First measurements of final state neutron polarisation in deuterium photodisintegration. Stephen Kay University of Edinburgh. NP Summer School 2015

Status of the CUORE experiment at Gran Sasso

Physic 492 Lecture 16

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Nuclear Astrophysics with DRAGON at ISAC:

Neutron capture cross sections on light nuclei

R-matrix Analysis (I)

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Determining Two Reaction Rates in Novae using the ANCs Technique. Tariq Al-Abdullah Hashemite University, Jordan Russbach, March 2011

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

Measurement of prompt fission γ-ray spectra in fast neutroninduced

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Background Free Search for 0 Decay of 76Ge with GERDA

Transcription:

Laboratory Underground Nuclear Astrophysics Recent results and status of the 14 N(p,γ) 15 O measurement at LUNA Heide Costantini Dipartimento di Fisica and INFN, Genova (Italy)

Laboratory for Underground Nuclear Astrophysics Gran Sasso National Laboratory (LNGS) Cosmic background reduction: µ: 10-6 n: 10-3 3 He( 3 He,2p) 4 He 50 KV : (1992-2001) d( 3 He,p) 4 He d(p,γ) 3 He 400 KV: (2000 ) 14 N(p,γ) 15 O (CNO cycle)

400 kv accelerator SPECIFICATIONS U max = 50 400 kv I 500 µa for protons DE max = 0.07 kev Energy spread : 72eV Total uncertainty is ±300 ev between Ep=100 400keV Present and future activity: in progress 14 N(p,γ) 15 O 4 He( 3 He, γ) 7 Be 25 Mg(p, γ) 26 Al

N(p,γ) 15 O and solar neutrinos 14 N(p, The rate of the CNO cycle is governed by the slowest reaction 14 N(p,γ) 15 O (Q=7.3 MeV) Borexino Homestake SuperK Sage Kamioka Gallex 13 N and 15 O neutrinos have fluxes and energy spectra comparable with those coming from 7 Be (pp chain)

Globular Clusters and 14 N(p,γ) 15 O reaction rate L 0 100 10 1 10000 7000 5000 (K)

14 N(p,γ) 15 O Schröder et al. (1987) Nucl. Phys A Angulo, Descouvement (2001), Nucl. Phys A S(0) = 1.55 ± 0.34 kev-b (Schröder) R/DC 0 S(0) = 0.08 ±0.06 kev-b (Angulo)

2 experimental approaches Gas target + BGO summing crystal Pure target Stable target total-s(e) Low resolution High efficiency E min < 100 kev Solid target angular distribution high density + HpGe detector Single γ transitions Low efficiency High resolution E min 140 kev

Experimental setup beam LN2 7 mm 10 mm LN2 55 o HpGe Target chamber dσ dω o ( 55 ) 1 wobbeling units target High density High stability High purity TiN deposited on Ta

Solid Target features 14 12 10 TiN 14 N(p,γ) 15 O E R =278 kev yield [a.u.] 8 6 4 = 115keV Target profile (thickness, homogeneity) 2 0 250 270 290 310 330 350 370 390 410 Proton Energy E lab [kev] 2,00 1,80 1,60 1,40 Target stability yield [a.u.] 1,20 1,00 0,80 0,60 0,40 0,20 typical: 25 C/day 0,00 0 2 4 6 8 10 12 time[day]

HpGe background Yield 1,00E+00 1,00E-01 At surface 3MeV < Eγ < 8MeV counts 1,00E-02 1,00E-03 1,00E-04 0.5 Counts/s 1,00E-05 1,00E-06 0 2000 4000 6000 8000 10000 Eγ [kev] Yield counts 1,00E+00 1,00E-01 1,00E-02 1,00E-03 1,00E-04 1,00E-05 1,00E-06 0 2000 4000 6000 8000 10000 Underground 3MeV < Eγ < 8MeV 0.0002 Counts/s Eγ[keV]

Beam induced background counts 70 60 50 40 30 20 10 11 B(p,γ) 12 C 14 N(p,γ) 15 O 11 B(p,γ) 12 C E beam = 200 kev 0 3000 5000 7000 9000 11000 E γ [kev] E beam = 140 kev counts 30 25 20 E γ 15 11 B(p,γ) 12 C 14 N(p,γ) 15 O 11 B(p,γ) 12 C 10 5 0 3000 5000 7000 9000 11000 E γ [kev]

The experimental spectrum counts DC/6.79 DC/6.17 E p = 250 kev Q = 41.2 C T = 20 h I =570 µa 6.17 DC/5.18 6.79 5.18 DC/0 E γ [kev]

Summing effect In close geometry meas. high summing effect probability 26 21 16 17cm Simulation R/dc 6.79 100% 11 6 1 5000 5500 6000 6500 7000 7500 8000 E-gamma(keV) 61 51 41 31 21 11 1 cm Simulation R/dc 6.79 100% Summing peak 1 5000 5500 6000 6500 7000 7500 8000 E-gamma(keV)

278 kev resonance parameters Resonance strength present work (13.5 ± 0.4 ± 0.8) mev literature (14 ± 2) mev Branching ratios at the 278 kev resonance R/DC 0 present work 1.7±0.1 literature 3.5 ±0.5 Hebbard & Bailey (1963) R/DC 6.79 23.3 ±0.3 23.3 ±0.6 R/DC 6.17 58.4 ±0.3 57.4 ±0.6 R/DC 5.18 16.6 ±0.2 17.1 ±0.6 Close geometry measurements Summing effect

beam Angular distribution measurements

2,5 Y R/DC 0 E lab = 220 kev 2 1,5 1 dσ = dω 1 2 + a1 P1 ( ϑ) + a2p ( ϑ) +... 0,5 0 cos 2 (θ) -0,01 0,19 0,39 0,59 0,79 0,99 Y R/DC 6.79 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99 Y R/DC 6.18 1,4 1,2 1 0,8 0,6 0,4 0,2 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 Y R/DC 5.18 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 Y 5.18 0 Y 6.18 0 Y 6.79 0 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99 1,2 1 0,8 0,6 0,4 0,2 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99 1,4 1,2 1 0,8 0,6 0,4 0,2 cos 2 (θ) 0-0,01 0,19 0,39 0,59 0,79 0,99

Data Analysis (1) x E pi E p inc 1E-03 E γ E γ inc E pi beam 8E-04 σ Ni [a.u.] 6E-04 4E-04 E 2E-04 0E+00 7400 7450 7500 7550 7600 E γ [kev] N i = σ ( E ) E ( E ( E ) p i de dx γ ε γ ( E ) p i p i b j

Data Analysis (2) x E p E p 3 2.5 2 Y 1.5 σ 1 0.5 Y = 2 λ 2 E ϖγb de dx E R R ε ( ) j γ ( E ) r N Y i 0 260 300 340 380 420 = E p [kev] ( ) de 2σ E ( ) ( ) p E p ε E E i i γ dx 2 de λ ϖγ γ dx ( ) ( R E ) R r ε E b j γ b j

Ground state results....... a = 5 fm present data Schröder (corr. for summing) a = 5.5 fm a = 6 fm S 0 gs gs = 0.25 ± 0.06 kev b

R/DC 6.79 results present data Schröder....... a = 5 fm a = 5.5 fm a = 6 fm S 0 6.79 6.79 = 1.35 ± 0.05 kev b

Schröder( 87) [kev-b] 3.2 ± 0.5 Angulo ( 01) [kev-b] 1.8 ± 0.2 S 0 tot tot = 1.7 ± 0.1 kev b Paper submitted to Phys. Letter B GC age increases of 0.7-1 Gyr CNO neutrino flux decreases a factor 2

Gas target set-up I max 400mA DE < 100 ev 10-7 mbar 10-6 mbar 10-4 mbar BGO Calorimeter HV 50-400 kv 0.5-2 mbar Windowless gas-target Max 10 mbar Beam: p, He

BGO detector Detection Efficiency 65 % Natural background (6500-8000 kev) Length : 28 cm Int. hall diam.: 6 cm Thickness : 7 cm 20 c/day Beam induced background E beam =210 kev E beam = 130 kev 19 F(p,αγ) 16 O 11 B(p,γ) 12 C 13 C(p,γ) 14 N D(p,γ) 3 He 13 C(p,γ) 14 N

Data analysis(1) Thin target N γ ( E ) z = N N σ η targ proj cm Extended gas target Detector efficiency N t arg ( z) P = ν ( z) kt de dx ( ) = E dz E z beam z 0 N γ = N proj ν kt L 0 P ( z) σ ( E( z) ) η( z)dz

Data analysis(2) Effective cross section σ eff ( E ) effcm = L N proj ν kt N 0 γ P ( z) η( z) dz N = proj Q Beam e Monte Carlo E z Eff de = EBeam d ( ρx) ρ( z dz Eff ) 0 L 0 P( z) η( z) dz Pressure profile along the target

Beam heating effect measurement The particle beam heats the gas changing the local density. Movable Lead Shielded NaI detector (1 x 1 ) The 278 kev 14 N(p,γ) 15 O resonance is positioned in front of the detector. The beam energy loss is proportional to the gas density.

NaI detector Interaction chamber position Lead Shield Brass Pipe

Pressure profile L 0 Pt ( z ) η ( z ) dz Pressure (mbar) Z (cm)

Cross Section preliminary data gas target data solid target data 71 kev

Ebeam = 80 kev

ωγ measurement(1) BGO Resonance Scan at 2 mbar (77 µa) Pressure 2.0 mbar ωγ (mev) 13.6 ± 0.8 Solid Target: 13.5 ± 0.4 ± 0.8 Other Works 14 ± 1

ωγ measurement(1) BGO Resonance Scan at 2 mbar (77 µa) Pressure 2.0 mbar 1.0 mbar 0.5 mbar ωγ (mev) 13.6 ± 0.8 12.7 ± 0.7 11.3 ± 0.6 Solid Target: 13.5 ± 0.4 ± 0.8 Other Works 14 ± 1

ωγ measurement(2) Y ( E σ 0 b, ρ) = N Q Assuming η and ρ as constants d = L 0 σ ( E( z)) ρ( z) η( z) dz η de d( ρx) Eb Eb σ ( E) de Because Amplitude energy dependence is negligible: bw ( E) de IF = 2 λ ωγ 2 >6Γ ωγ = 2 λ 2 Y max M + m M η de d( ρx)

ωγ measurement(3) P % σ BW (E) (mbar) integral Experimental ratio 2.0 9.3 Γ 100 1 1.0 4.9 Γ 93.93 +.08 0.5 2.4 Γ 81.83 +.07 No appreciable systematic effects but Further scans at 1.5 and 3 mbar

Future perspectives(1) 4 He( 3 He,γ) 7 Be Φ B depends on nuclear physics and astrophysics inputs Φ B = Φ (SSM) B s -0.43 33 s 0.84 34 s 1 17 s -1 e7 s -2.7 pp com 1.4 opa 2.6 dif 0.34 lum 7.2 These give flux variation with respect to the SSM calculation when the input X is changed by x = X/X (SSM). Can learn astrophysics if nuclear physics is known well enough. Nuclear physics uncertainties, particularly on S 34, dominate over the present observational accuracy Φ Β /Φ Β =7%. The foreseeable accuracy Φ Β /Φ Β =3% could illuminate about solar physics if a significant improvement on S 34 is obtained Source S33 S34 S17 Se7 Spp Com Opa Dif Lum X/X (1σ) 0.06 0.09 0.05? 0.02 0.02 0.06 0.02 0.10 0.004 Φ Β /Φ Β (1σ) 0.03 0.08 0.05 0.02 0.05 0.08 0.05 0.03 0.03

4 He( 3 He,γ) 7 Be Mainly 3 γ-transitions: Eγ =1585 kev + E cm (DC 0); Eγ = 1157 kev + E cm and Eγ = 429 kev (DC 0.429; 0.429 0)

Past measurements 0,8 on-line γ-measurements activation measurements 0,7 Hilgemeier et. al. 1988 S(0) [kev b] 0,6 0,5 Nagatani et. al. 1969 Osborne et. al. 1982 Hilgemeier et. al. 1988 on-line γ -meas. average Osborne et. al. 1982 Robertson et. al. 1983 Volk et. al. 1983 activation average 0,4 Parker et. al. 1963 Kräwinkel et. al. 1982 Alexander et. al. 1984 0,3

Target chamber design (1) gas target Pb Pb W Pb Cu HpGe Cu Pb

Target chamber design Movable silicon detector for I*ρ meas. Removable calorimeter cap for off-line 7 Beactivity measurement

Expected counting rate P = 1 mbar; I = 200 µa counts/day 10000,00 1000,00 100,00 10,00 1,00 1.6 MeV 1.2 MeV BCK HpGe 0,10 0,01 0,00 0,00 50,00 100,00 150,00 200,00 E cm [kev]

Future perspectives(2) 25 Mg(p,γ) 26 Al 25 Mg(p,γ) is the main production mechanism for 26 Al in astrophysical scenarios

E lab p (kev) 135.1 112.2 95.8 59.7 38.4 ωγ (ev) <1.4 10-10 (3±1) 10-11 (1±0.3) 10-10 (3±1) 10-13 <2.4 10-20 E γ = 6436 kev E γ = 6398 kev Resonance strengths calculated from the 25 Mg( 3 He,d) 26 Al reaction (Iliadis et al 1996) BGO background spectrum Time = 18.974 d

Conclusions N(p,γ) 15 O has been studied with a solid target set-up down to E cm =135 kev 14 N(p, Present work improves the experimental information concerning the R/DC 0 transition Using a gas target set-up the 14 N(p,γ) 15 O total cross-section is presently studied at LUNA down to E cm =70 kev Future measurements are : 4 He( 3 He, γ) 7 Be 25 Mg(p, γ) 26 Al (gas target) (solid target)