The role of core excitations in break-up reactions

Similar documents
Workshop on low-energy nuclear reaction dynamics

Dynamics of the scattering of 11 Li on 208 Pb at energies around the Coulomb barrier

Recent advances in nuclear reaction theories for weakly bound nuclei

Semi-Classical perturbation theory Coulomb only First-order most used

Description of (p, pn) reactions induced by Borromean nuclei

Single-particle and cluster excitations

Two neutron transfer in Sn isotopes

Universidad de Sevilla

Inclusive breakup measurements of the 7 Li+ 119 Sn system.

Eikonal method for halo nuclei

Fusion of light halo nuclei

Study of the break-up channel in 11 Li+ 208 Pb collisions at energies around the Coulomb barrier

Problems in deuteron stripping reaction theories

Scattering of He on Pb at energies around the Coulomb barrier

Three- and four-particle scattering

Status of deuteron stripping reaction theories

Theory of Nuclear reactions. Scattering theory: multi-channel!

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model

Three-cluster dynamics within an ab initio framework

nuclear states nuclear stability

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Nuclear and Coulomb excitations of the pygmy dipole resonances

The many facets of breakup reactions with exotic beams

Cálculos para la interpretación de experimentos de reacciones nucleares con núcleos exóticos (CIERNEX)

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Deuteron induced reactions, spin distributions and the surrogate method

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Coulomb breakup of light composite nuclei. Abstract

Structure of halo nuclei and transfer reactions

Scattering of halo nuclei on heavy targets at energies around the Coulomb barrier

arxiv: v2 [nucl-th] 27 Jun 2014

Asymmetry dependence of Gogny-based optical potential

Di-neutron correlation in Borromean nuclei

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear Reaction Theory

Physics of neutron-rich nuclei

Theory Challenges for describing Nuclear Reactions

Reaction dynamics for fusion of weakly-bound nuclei

Microscopic nuclear form factor for the Pygmy Dipole Resonance

Extracting spectroscopic information from ( 18 O, 16 O) two-neutron transfer reactions. Manuela Cavallaro INFN -LNS (Italy)

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions

Pairing Correlations in Nuclei on Neutron Drip Line

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Computational approaches to many-body dynamics of unstable nuclear systems

Structure at and Beyond the Neutron Dripline

Knockout beyond the drip line

Theory and Calculation of Two-nucleon Transfer Reactions

Inclusive deuteron induced reactions

Photo Reactions in Few-Body Systems - From Nuclei to Cold-Atoms

Molecular Structures in Slow Nuclear Collisions

Nuclear and Coulomb excitations of low-lying dipole states in exotic and stable nuclei

Structures and Transitions in Light Unstable Nuclei

Deuteron induced reactions

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Shell model description of dipole strength at low energy

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Indirect Methods in Nuclear Astrophysics

Effective Field Theory for light nuclear systems

Parity-Violating Asymmetry for 208 Pb

arxiv:nucl-th/ v1 23 Mar 2004

Variatonal description of continuum states

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Nucleon Electromagnetic Form Factors: Introduction and Overview

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Safety Co-ordinator : Patrick Walden, TRIUMF, ext : 7340

Scattering and Reactions of Halo Nuclei

Three-body decay: the case of 12 C 3α

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

The astrophysical reaction 8 Li(n,γ) 9 Li from measurements by reverse kinematics

From Halo EFT to Reaction EFT

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Nuclear Reactions Part III Grigory Rogachev

Long-range versus short range correlations in two neutron transfer reactions

Reaction Dynamics for Light Dripline Nuclei

arxiv:nucl-th/ v1 1 May 1997

Many-Body Theory of the Electroweak Nuclear Response

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Unbound exotic nuclei studied by projectile fragmentation

Direct reactions methodologies for use at fragmentation beam energies

Sunday Monday Thursday. Friday

On the breakup of 12 C resonances into three α particles

Quantum Theory of Many-Particle Systems, Phys. 540

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Energy dependence of breakup cross sections of the halo nucleus 8 B and effective interactions

arxiv:nucl-ex/ v1 21 Jun 2001

Four-nucleon scattering

Constraints on interaction from the process near threshold. V.F. Dmitriev and A.I. Milstein Budker Institute of Nuclear Physics

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Shells Orthogonality. Wave functions

Isospin character of the first quadrupole transition in the A~100 region

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Candidate multiple chiral doublet bands in A 100 mass region

Reassessing the Vibrational Nuclear Structure of 112 Cd

Neutron Halo in Deformed Nuclei

NON-LOCAL OPTICAL POTENTIALS

Transcription:

The role of core excitations in break-up reactions J. A. Lay 1, A. M. Moro 2, J. M. Arias 2, R. de Diego 3 1 DFA Galileo Galilei, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy; 2 Dpto. de FAMN, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain; 3 Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, P-1649-003 Lisboa, Portugal Trento, 6 th June 2016 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 1 / 52

1 Motivation 2 Structure Halo nuclei with excitations of the core PS discretization method Semi-microscopic model Application to 11 Be, 19 C, and 21 C 3 Reactions Semi-Classical EPM DWBAx XCDCC J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 2 / 52

Motivation J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 3 / 52

Motivation 11 Be in a single particle model E (MeV) Experimental 4 10 + Be(2 )+n threshold 3 2 1 Two-body Continuum Single particle model 1d 5/2 0-1 1/2-1/2 + 10 Be(0 + )+n threshold 1p 1/2 2s 1/2 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 4 / 52

Motivation c r v c ξ r v x No core excitations 11 Be(1/2 + ) = 1 10 Be(0 + g.s.) ν s 1/2 Core excitations 11 Be(1/2 + ) = α 10 Be(0 + g.s.) νs 1/2 + β 10 Be(2 + ) νd 5/2 +... α 2, β 2 = spectroscopic factors J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 5 / 52

Motivation 10 Be* 11 Be 10 Be 11 Be Pb n Pb n x Pure valence excitation Core-excitation mechanism J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 6 / 52

Structure Halo nuclei with excitations of the core r v Hamiltonian with core excitation c ξ H p = T( r)+h core (ξ)+v NC ( r, ξ) Model for the core h core (ξ) Selecting the model space which states are included The model for core excitations will determine V NC ( r, ξ) Same formalism for different interaction models: Particle-Rotor model (deformed core) Particle-Vibration From microscopic transition densities J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 7 / 52

Weak coupling limit Structure Halo nuclei with excitations of the core r v Hamiltonian with core excitation c ξ H p = T( r)+h core (ξ)+v NC ( r, ξ) We look for a basis including core degrees of freedom Coupling core ϕ I ( ξ) and single particle Y lsj (ˆr) to the total J p n α different possible combinations or channels α = {l,s,j,i} J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 8 / 52

Structure Halo nuclei with excitations of the core Generalization of Pseudo-states (PS) discretization method r v Hamiltonian with core excitation c ξ H p = T( r)+h core (ξ)+v NC ( r, ξ) Set of L 2 functions in this scheme: φ i,jp ( r, ξ) = α RTHO i,α [Y (r) lsj (ˆr) ϕ I ( ξ) ] J p i = 1,..,N Total number of functions: N times the number of channels N n α J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 9 / 52

Structure PS discretization method Pseudo-states (PS) discretization method Discrete set of L 2 functions: φ n Completeness condition: N φi φ i I To diagonalize the internal Hamiltonian of a projectile H p Matrix elements: H p n,n φ n φ n H p φ n φ n J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 10 / 52

Structure PS discretization method Pseudo-states (PS) discretization method Eigenstates of the matrix NxN: ϕ (N) n = N C n i φ i { nb states with ε n < 0 representing the bound states. N-n b,ε n > 0 discrete representation of the Continuum Orthogonal and normalizable. What is the most suitable basis? Lagrange, Sturmian, Harmonic Oscillator? J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 11 / 52

Structure PS discretization method Transformed Harmonic Oscillator basis Analytic LST from Karataglidis et al.,prc71,064601(2005) 1 s(r) = 1 m 1 ( 2b 1 ) ( ) m m r + 1 γ r HO vs THO: φ(s) e ( s b) 2 = φ[s(r)] e γ2 2b 2r Correct asymptotic behaviour for bound states. Range controlled by the parameters of the LST. J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 12 / 52

THO parameters Structure PS discretization method b is treated as a variational parameter to minimize g.s. energy Then γ b controls the density of states: 40 HO THO THO THO γ=1 fm 1/2 γ=2.48 fm 1/2 γ=5 fm 1/2 30 E (MeV) 20 10 0 γ can be also used to look for resonances J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 13 / 52

Finding Resonances Structure PS discretization method 6 5 J= spectrum ε (MeV) 4 3 2 1 10 Be(2 + )+n thr. Resonance 0 0 2 4 6 8 10 N 10 Be(0 + )+n thr. J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 14 / 52

Finding Resonances Structure PS discretization method 6 5 J= spectrum ε (MeV) 4 3 2 1 10 Be(2 + )+n thr. Resonant eigenstates Resonance 0 0 2 4 6 8 10 N 10 Be(0 + )+n thr. J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 15 / 52

Spectrum Structure PS discretization method ε (MeV) 6 5 4 3 2 1 0 J= Spectrum 2 4 6 8 10 N Density of states 70 60 50 40 30 20 ρ(k)= < k n > 10 0 1 2 3 4 5 6 ε (MeV) 0 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 16 / 52

Structure PS discretization method Electromagnetic Transition Probabilities 50 db(e2)/de (e 2 fm 4 /MeV) 3 2 1 (without core excitations) THO: contribution THO: contribution THO: total db(e2)/de (e 2 fm 4 /MeV) 40 30 20 10 (with core excitations) 0 0 1 2 3 4 ε (MeV) 0 0 1 2 3 4 ε (MeV) B(E2) dominated by collective excitation of the core J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 17 / 52

PRM drawbacks Structure PS discretization method PRM needs: The core to be a rotor A phenomenological potential based on the following parametres: E(2 + ), β 2, V c, r, a, V so,r so, a so J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 18 / 52

P-AMD Structure Semi-microscopic model 0.30 0 0.25 λ=0-0.01 λ=2 ρ 0 (fm -3 ) 0.20 0.15 0.10 0.05 0 + proton density 2 + proton density 0 + neutron density 2 + neutron density ρ 2 (fm -3 ) -0.02-0.03-0.04-0.05 0 + ->2 + proton density 2 + ->2 + proton density 0 + ->2 + neutron density 2 + ->2 + neutron density 0 0 1 2 3 4 5 6 r (fm) -0.06 0 1 2 3 4 5 6 r (fm) Densities from Antisymmetrized Molecular Dynamics (AMD) Y. Kanada-En yo et al. Phys. Rev. C 60, 064304 (1999) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 19 / 52

P-AMD Structure Semi-microscopic model 0.30 0 0.25 λ=0-0.01 λ=2 ρ 0 (fm -3 ) 0.20 0.15 0.10 0.05 0 + proton density 2 + proton density 0 + neutron density 2 + neutron density ρ 2 (fm -3 ) -0.02-0.03-0.04-0.05 0 + ->2 + proton density 2 + ->2 + proton density 0 + ->2 + neutron density 2 + ->2 + neutron density 0 0 1 2 3 4 5 6 r (fm) I VNC λ (r, ξ) I = -0.06 0 1 2 3 4 5 6 r (fm) dr [ I ρ λ (r,ξ) I v nn ( r r ] ) JLM interaction Phys. Rev. C 16, 80 (1977). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 20 / 52

P-AMD Structure Semi-microscopic model 0 20-10 -20 <0 + V 0 0 + > 10 <2 + V 2 2 + > V (MeV) -30-40 -50 PRM P-AMD: JLM P-AMD: M3Y V (MeV) 0-10 <2 + V 2 0 + > PRM P-AMD: JLM P-AMD: M3Y -60 0 2 4 6 8 r (fm) PRC89, 014333 (2014) -20 0 2 4 6 8 r (fm) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 21 / 52

P-AMD E (MeV) 4 3 2 1 Experimental (5/2) - (3/2) - + Structure Application to 11 Be, 19 C, and 21 C PRM P-AMD 10 + Be(2 )+n thr. 3/2 3/2-5/2-3/2-5/2-0 1/2-1/2-1/2 + 1/2 + 1/2-1/2 + 10 Be(0 + )+n thr. Renormalization factors λ + = 1.058 and λ = 0.995 PRC 70, 054606 (2004); PRC 81, 034321 (2010); PL B 611, 239 (2005). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 22 / 52

19 C Spectrum Structure Application to 11 Be, 19 C, and 21 C 4 Experimental P-AMD 3 1/2 + E (MeV) 2 1 18 C(2 + )+n thr. 0 ( ) 1/2 + 1/2 + 18 C(0 + )+n thr. PL B 660, 320 (2008); PL B 614, 174 (2005). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 23 / 52

19 C Spectrum Structure Application to 11 Be, 19 C, and 21 C 4 Experimental P-AMD E (MeV) 3 2 1 0 1/2 + 1/2 - ( ) 1/2 + 1/2 + 18 C(2 + )+n thr. 18 C(0 + )+n thr. PL B 660, 320 (2008); PL B 614, 174 (2005) SAMURAI J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 24 / 52

19 C Spectrum Structure Application to 11 Be, 19 C, and 21 C 4 3 Experimental Shell-Model (WBP) 1/2 + 1/2 + P-AMD E (MeV) 2 1 0 ( ) 1/2 + 1/2 + 1/2 + 18 C(2 + )+n thr. 18 C(0 + )+n thr. PL B 660, 320 (2008); PL B 614, 174 (2005). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 25 / 52

19 C Spectrum Structure Application to 11 Be, 19 C, and 21 C E (MeV) 4 3 2 1 0-1 Experimental 1/2 + 1/2 + WBP 1/2 + 1/2 + P-AMD 1/2 + PRM(1) 1/2 + 1/2 + PL B 660, 320 (2008); PL B 614, 174 (2005). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 26 / 52

19 C Spectrum Structure Application to 11 Be, 19 C, and 21 C 4 3 Experimental WBP P-AMD 1/2 + 1/2 + PRM(1) 1/2 + PRM(2) 1/2 + E (MeV) 2 1 0-1 ( ) 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + PL B 660, 320 (2008); PL B 614, 174 (2005). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 27 / 52

Structure Application to 11 Be, 19 C, and 21 C State Model 0 + (ls)j 2 + s 1/2 2 + d 3/2 2 + d 5/2 1/2 + 1 P-AMD 0.529 0.035 0.436 WBP 0.600 0.002 0.184 1 P-AMD 0.028 0.386 0.121 0.464 WBP 0.027 0.494 0.001 0.076 1 P-AMD 0.276 0.721 0.000 0.003 WBP 0.383 0.015 0.000 0.751 2 P-AMD 0.200 0.142 0.002 0.657 WBP 0.035 0.609 0.009 0.291 J. A. Lay et al., PRC89, 014333 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 28 / 52

21 C Spectrum Structure Application to 11 Be, 19 C, and 21 C E (MeV) 4 3 2 1 Experimental P-AMD Preliminary 1/2 + 20 + C(2 )+n thr. 0 (1/2 + ) 20 C(0 + )+n thr. PRC86, 054604 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 29 / 52

Reactions Semi-Classical EPM Reactions Equivalent Photon Method J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 30 / 52

19 C+ 208 Pb @ 67 MeV/u Reactions Semi-Classical EPM 10 6 19 C+ 208 Pb 1500 19 C+ 208 Pb RIKEN RIKEN dσ/dω (mb/sr) 10 5 10 4 dσ/de rel (mb/mev) 1000 500 10 3 0 0.5 1 1.5 2 2.5 3 θ c.m. (deg) 0 0 1 2 3 4 E rel (MeV) Coulomb Excitation T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999). J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 31 / 52

19 C+ 208 Pb @ 67 MeV/u Reactions Semi-Classical EPM Semiclassical calculations Equivalent Photon Method Only includes first order Coulomb excitation. Actually this is only a first test before using the basis with DWBAx/XCDCC. dσ λ dω de = 4π3 bu 9 db(e 1) dn E1 de dω J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 32 / 52

19 C+ 208 Pb @ 67 MeV/u Reactions Semi-Classical EPM T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999). dσ/dω (mb/sr) 10 6 10 5 10 4 19 C+ 208 Pb RIKEN E1 E2 Total conv. 10 3 0 0.5 1 1.5 2 2.5 3 θ c.m. (deg) The reaction is dominated by E1 first order Coulomb excitation as expected J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 33 / 52

19 C+ 208 Pb @ 67 MeV/u Reactions Semi-Classical EPM dσ/de rel (mb/mev) 1500 1000 500 19 C+ 208 Pb RIKEN E1 E2 Total conv. 0 0 1 2 3 4 E rel (MeV) Resonant E2 contribution more important due to its low excitation energy J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 34 / 52

Reactions DWBAx Reactions DWBAx J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 35 / 52

Reactions DWBAx DWBAx calculations p c ξ r v R r vt r ct target No-recoil approach Only first order excitation. Same results for these energies than XCDCC. A. M. Moro et al. AIP Conf. Proc. 1491, 335 (2012) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 36 / 52

Reactions DWBAx i Ψ Ψ v J M JM r vt r c R ξ r ct rvt c ξ target f v r R r ct target T JM,J M if = χ ( ) f ( R)Ψ f J M ( r,ξ) V vt( r vt )+V ct ( r ct,ξ) χ (+) i ( R)Ψ i JM ( r,ξ) Core excitation affects in two ways: ❶ Ψ JM ( r,ξ) = projectile states static deformation effect). Ψ JM ( r,ξ) = [ ] ϕ J l,j,i ( r) Φ I(ξ) JM l,j,i ❷ V ct ( r ct,ξ) can modify the core state dynamic core excitation. J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 37 / 52

Reactions DWBAx i Ψ Ψ v J M JM r vt c ξ Only first order plus no-recoil: r R r ct rvt target T JM,J M if T JM,J M val +T JM,J M core f c ξ r R r ct v target ❶ T JM,J M val ❷ T JM,J M core Valence excitations Core excitations They explicitly separates in the calculation A. M. Moro & R. Crespo, Phys. Rev. C 85, 054613 (2012) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 38 / 52

Reactions 11 Be+ 12 C @ 67 MeV/nucleon DWBAx RIKEN: N. Fukuda et al., Phys. Rev. C70, 054606 (2004) 11 Be SF3 BDC Target Neutron VETO NEUT FDC HOD 10 Be Dipole Magnet Measurement of Break up Cross Sections of 11 Be on 12 C and 208 Pb J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 39 / 52

19 C+p @ 67 MeV/u Reactions DWBAx Y. Satou et al., Phys. Lett. B 660, 320 (2008). Microscopic DWBA calculations suggest a 1/2 + transition J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 40 / 52

19 C+p @ 67 MeV/u Reactions DWBAx 10 2 10 1 19 C+p RIKEN P-AMD: total conv. 1 P-AMD: valence conv. 1 P-AMD: core conv. 1 dσ/dω (mb/sr) 10 0 10-1 10-2 0 15 30 45 60 75 θ c.m. (deg) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 41 / 52

19 C+p @ 67 MeV/u Reactions DWBAx dσ/dω (mb/sr) 10 1 10 0 19 C+p @ 70 MeV/u Experimental data 1 XCDCC 2 XCDCC 1 XDWBA s 1/2 d 5/2 DWBA s.p. dσ/dω (mb/sr) 10 8 6 4 19 C+p @ 70 MeV/u RIKEN 1 XCDCC 1 XDWBA XCDCC x1.8 2 XDWBA s.p. x25 1 2 10-1 0 15 30 45 60 75 θ c.m. (deg) 0 0 15 30 45 60 75 θ c.m. (deg) J. A. Lay et al., Submitted to PRC(R) arxiv:1605.09723 A. M. Moro & J. A. Lay, Phys. Rev. Lett. 109, 232502 (2012) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 42 / 52

Reactions XCDCC Reactions XCDCC J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 43 / 52

Full CDCC Reactions XCDCC XCDCC calculations p c ξ r v R r vt r ct target Including core excitations in CDCC We already showed how to discretize the continuum with core excitations DWBA only valid for intermediate and high energies CDCC also includes the effect of break up in the elastic cross section J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 44 / 52

Reactions XCDCC Hamiltonian: H p = T r +V vc ( r,ξ)+h core (ξ) H = H p +V vt (r vt )+V ct ( r ct,ξ) Model wavefunction: p c ξ r v R r ct rvt target Φ( R, r,ξ) = α χ α ( R)Ψ α J M ( r,ξ) Coupled equations: [H E]Φ( R, r,ξ) = 0 [ E ε α T R V α,α ( R) ] χ α ( R) = α,α ( R)χ α αv n ( R) Transition potentials: V α;α ( R) = Ψ α J M ( r,ξ) V vt( r vt )+V ct ( r ct,ξ) Ψ α JM ( r,ξ) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 45 / 52

Reactions XCDCC Coupling potentials: CDCC vs. XCDCC p c ξ r v R r ct r vt target Standard CDCC. uses coupling potentials: V α;α ( R) = Ψ α J M ( r) V vt(r vt )+V ct (r ct ) Ψ α JM ( r) Extended CDCC uses generalized coupling potentials V α;α ( R) = Ψ α J M ( r,ξ) V vt( r vt )+V ct ( r ct,ξ) Ψ α JM ( r,ξ) R. de Diego et al, PRC89 (2014) 064609 (PS discretization) also for binning Summers et al, PRC74 (2006) 014606 J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 46 / 52

Reactions XCDCC XCDCC calculations for 11 Be+ 197 Au at sub-barrier energies Experiment: TRIUMF (Aarhus - LNS/INFN - Colorado - GANIL - Gothenburg -Huelva - Louisiana - Madrid - St. Mary - Sevilla - York collaboration) V. Pesudo s PhD Thesis Submitted to PRL... J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 47 / 52

Reactions XCDCC XCDCC calculations for 11 Be+ 197 Au at sub-barrier energies Inelastic scattering probability:... P inel (θ) = σ inel (θ) σ bu (θ)+σ qel (θ) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 48 / 52

Reactions XCDCC XCDCC calculations for 11 Be+ 197 Au at sub-barrier energies Breakup scattering probability:... P bu (θ) = σ bu (θ) σ bu (θ)+σ qel (θ) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 49 / 52

Reactions XCDCC Electric B(E1) response of 11 Be The inert-core model of 11 Be cannot reproduce simultaneously the B(E1) to bound and continuum states cannot reproduce simultaneously inelastic and breakup. J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 50 / 52

Conclusions P-AMD Accurate semi-microscopic description of even-odd halo nuclei Predictive power for unknown halo nuclei like 19,21 C Could be able to include core excitations from different sources Coulomb dissociation Core excitations may interfere the extraction of B(E 1) distributions through the presence of low lying quadrupole resonances Nuclear Break up The interplay between core and valence contributions is crucial to understand resonant break up of halo nuclei Break up reactions are sensitive to spectroscopic factors of resonant states difficult to populate in traditional transfer reactions Full XCDCC will clarify the effects of core excitations in different observables (elastic, energy distributions, inclusive data) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 51 / 52

Conclusions Next steps Apply the P-AMD model with other densities and other halo nuclei Perform full PS-XCDCC calculations with the P-AMD model Use the density distributions of the PS to obtain energy distribution of the cross sections Continue for inclusive observables Compare XCDCC with the recent extension of Faddeev-AGS (A. Deltuva) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 52 / 52

Appendix Thank you!! And also to: Theory University of Seville : J. Gómez-Camacho University of Lisbon : R. Crespo University of Surrey : R. C Johnson Yukawa Institute, Kyoto University : Y. Kanada-En yo Experiment IEM-CSIC, Madrid : V. Pesudo, M. J. G. Borge, O. Tengblad S1202 Collaboration (formerly E1104) J.A. Lay et al. (U. Padova) Core excitations Trento, 06/06/2016 53 / 52