Brazilian Journal of Physics, vol. 29, no. 4, December, Caixa Postal 676, 13564{200, S~ao Carlos, SP, Brazil

Similar documents
Brazilian Journal of Physics, vol. 27, no. 4, december, with Aperiodic Interactions. Instituto de Fsica, Universidade de S~ao Paulo

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 8 Jan 1998

1 Introduction Photodetachment of a hydrogen ion H? in an electric eld has been measured and oscillations in the cross section have been observed [1].

arxiv: v1 [quant-ph] 25 Feb 2014

renormalization, the AB potential becomes related to the delta function, contact, interaction. These issues have been discussed from the quantum mecha

468 Brazilian Journal of Physics, vol. 27, no. 4, december, Asymmetry Parameters for Ethylene. L.M. Brescansin, M.-T. Lee, L.E.

Oscillatory behavior ofthe specic heat at low temperature in quasiperiodic structures

Spin Peierls Effect in Spin Polarization of Fractional Quantum Hall States. Surface Science (2) P.1040-P.1046

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 26 Sep 2001

386 Brazilian Journal of Physics, vol. 30, no. 2, June, 2000 Atomic Transitions for the Doubly Ionized Argon Spectrum, Ar III 1 F. R. T. Luna, 2 F. Br

Structure. quant-ph/ George Svetlichny. Departamento de Matematica. Pontifcia Universidade Catolica. Rua Marqu^es de S~ao Vicente 225

arxiv:hep-th/ v1 13 Feb 1992

Brazilian Journal of Physics, vol. 29, no. 2, June, y DFI-UFMS, C.P. 549, Campo Grande - MS, Brazil

Quantum Condensed Matter Physics Lecture 9

RELAXATION AND TRANSIENTS IN A TIME-DEPENDENT LOGISTIC MAP

Depolarization shift in coupled quantum wells with tunable level spectrum

Floquet Topological Insulator:

arxiv:quant-ph/ v1 5 Mar 2001

arxiv: v2 [hep-th] 14 Aug 2008

Dynamical properties ofa particle in a classical time-dependent potential well

/N

Magneto-Optical Properties of Quantum Nanostructures

COHERENT CONTROL OF QUANTUM LOCALIZATION

STARK EFFECT IN P-TYPE DELTA-DOPED QUANTUM WELLS

Two-photon Absorption Process in Semiconductor Quantum Dots

Faddeev-Yakubovsky Technique for Weakly Bound Systems

with ultracold atoms in optical lattices

Are Two Gluons the QCD Pomeron? O. J. P. Eboli. Instituto de Fsica, Universidade de S~ao Paulo. C.P , 05315{970, S~ao Paulo { SP, Brazil

arxiv:cond-mat/ v1 6 Oct 1995

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 18 Mar 1998

The stable marriage problem with restricted pairs

Coulomb and nuclear potentials between deformed nuclei

1 Introduction Duality transformations have provided a useful tool for investigating many theories both in the continuum and on the lattice. The term

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Magneto-Optical Trap for Sodium Atoms from a Vapor Cell and Observation of Spatial Modes

Physics and technology of nanosize structures

Synchronizationinanarray of globally coupled maps with delayed interactions

Brazilian Journal of Physics, vol. 26, no. 1, March, A.B. Henriques and L.C.D.Goncalves. Instituto de Fsica, Universidade de S~ao Paulo

Optical Lattices. Chapter Polarization

arxiv:hep-ph/ v1 30 Oct 2005

Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements

Supplementary Materials

Variational Calculation of Eective Classical. November 12, Abstract

Mechanical Properties of Phagraphene Membranes: A Fully Atomistic Molecular Dynamics Investigation

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Strange / anti-strange asymmetry in the nucleon sea. H. R. Christiansen and J. Magnin y. Centro Brasileiro de Pesquisas Fsicas, CBPF - DCP.

SSH Model. Alessandro David. November 3, 2016

Topology and many-body physics in synthetic lattices

Bilipschitz determinacy of quasihomogeneous germs

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 20 Feb 2001

Electrons and Phonons on the Square Fibonacci Tiling

arxiv:quant-ph/ v1 4 Jul 2005

Tight-binding treatment of the Hubbard model in infinite dimensions

SchroK dinger equation with imaginary potential

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

DEGREE OF EQUIVARIANT MAPS BETWEEN GENERALIZED G-MANIFOLDS

where n = (an integer) =

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Spin and Charge transport in Ferromagnetic Graphene

R function for residual analysis in linear mixed models: lmmresid

Band Gap Measurement *

Entanglement in Topological Phases

Upper-barrier excitons: first magnetooptical study

Quasiparticle-Rotor Model Description of Carbon Isotopes

ANALYSIS OF VERTICAL GROWTH OF FRACTURES IN FRAC PACK OPERATIONS IN RESERVOIR ROCKS

Coexistence of monoclinic and tetragonal phases in PMN-PT single. crystal

Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures

The Higgs boson mass in minimal technicolor models

Defense Technical Information Center Compilation Part Notice

Wannier Starkresonances in optical and semiconductor superlattices

ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF. University of Cambridge ALLEN METHERELL. University of Central Florida GARETH REES. University of Cambridge

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

Unified theory of quantum transport and quantum diffusion in semiconductors

Determination of Particle Size Distribution of Water-Soluble CdTe Quantum Dots by Optical Spectroscopy

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi

Urban heat island in the metropolitan area of São Paulo and the influence of warm and dry air masses during summer

Quantum Oscillations in Graphene in the Presence of Disorder

Models for Time-Dependent Phenomena

T sg. α c (0)= T=1/β. α c (T ) α=p/n

Lie superalgebras and the multiplet structure of the genetic code. II. Branching schemes

Broadening of terahertz spectrum due to Zener tunnelling in superlattices

Quantum Condensed Matter Physics

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b

cond-mat/ Mar 1996

microscopic theory of gravitation must involve new and previously unanticipated degrees of freedom, which have nothing to do with strings or membranes

Determination of the 12 C nuclear density through heavy-ion elastic scattering experiments

LASER-ASSISTED ELECTRON-ATOM COLLISIONS

arxiv:nucl-th/ v1 23 Mar 2004

On the Equivariance of the Orientation and the Tensor Field Representation Klas Nordberg Hans Knutsson Gosta Granlund Computer Vision Laboratory, Depa

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Energy dispersion relations for holes inn silicon quantum wells and quantum wires

Femtosecond laser-tissue interactions. G. Fibich. University of California, Los Angeles, Department of Mathematics ABSTRACT

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

arxiv: v2 [cond-mat.mes-hall] 21 Nov 2013

The Elliptic Solutions to the Friedmann equation and the Verlinde s Maps.

Radiative Transition Probabilities and Lifetimes for the Band Systems A 2 Π X 2 Σ + of the Isovalent Molecules BeF, MgF and CaF

PROD. TYPE: COM. Inuence of crack fractal geometry on elastic plastic fracture mechanics

From Graphene to Nanotubes

Lecture 4: Basic elements of band theory

Transcription:

Brazilian Journal of Physics, vol. 9, no. 4, December, 1999 685 Evolution of Dynamic Localization Regimes in Coupled Minibands P. H.Rivera 1 and P. A.Schulz 1 Departamento de Fsica, Universidade Federal de S~ao Carlos Caixa Postal 676, 13564{00, S~ao Carlos, SP, Brazil Instituto de Fsica Gleb Wathagin, Universidade Estadual de Campinas Caixa Postal 6165, 13083{970, Campinas, SP. Brazil Received February 7, 1999 We consider the behaviour of two coupled symmetric electronic minibands in the presence of an AC intense eld. Symmetric coupled minibands are realized as dimerization procedures. The minibands are emulated by a tight-binding nite chain, whereas the interaction with an AC eld is described by a time-independent Hamiltonian. We follow the evolution of dressed minibands, non perturbatively, in a wide frequency range. For one dimerization procedure, a transition between both limits can be systematically followed and a dynamic breakdown is unambigously identied. The most striking eect that may occur is a eld-induced analog of an insulator-metal transition due to the suppression of a Peierls-like instability. The electronic properties of semiconductor microstructures dressed by intense AC elds have been attracting growing interest in the past few years, leading to predictions of tunable quantum well lasers [1], dynamic localization (DL) in dressed minibands of semiconductor superlattices [, 3], as well as resonant tunneling suppression [4]. These eld eects on superlattices have been observed experimentally [5, 6]. One important theoretical result is that DL in isolated minibands can be characterized by miniband collapses obeying the zero order Bessel function (ZOBF) roots, where the argument ofj 0 involves the eld frequency and intensity. The present work is concerned with the intense AC eld eects on coupled superlattice minibands. Although intensively studied in the past few years[7, 8, 9, 10], there are still open questions related to the mechanisms of DL in multi-miniband systems. One of these multiminibands system is a set of two coupled symmetric minibands, completely isolated from other minibands. They are obtained by either one of two dimerization processes, as was suggested by Holthaus[7]: alternating two barrier widths or alternating two dierent quantum wells. We start our work by simulating these dimerized superlattices with a heuristic tight-binding nite chain model. For two alternating barrier widths, the Hamiltonian is given by: 1 X `n j`m >< ` +1;mj + X H o = E o j`m >< `mj+ `m V 1 (,1)` +1 (,1)`+1 +1 + V (,1)`+1 +1 V 1 j` +1; m >< `mj + V (,1)` +1 : (1) And for two alternating quantum wells, we have V H o = X`m Xh `m [E o +(,1)`]j`m >< `mj+ ; j`m >< ` +1;mj + j` +1; m >< `mj i () where V 1, V, V are the hopping parameters related to the barrier widths; `, m are the site and the photon index, respectively. E 0 is the s-orbital energy related to the quantum well state energy and the dierence of energy with respect to the rst neighbor s-orbital energy, leading to E g = when the intensity of the eld is zero. The interaction with an intense AC eld of a given frequency is described by a semiclassic time-dependent pablo@lab.df.ufscar.br; pablo@i.unicamp.br

686 P. H. Rivera and P. A. Schulz Hamiltonian, which is replaced by a innite timeindependent Hamiltonian through a Floquet-Fourier unitary tranformation. The treatment of the timedependent Schrodinger equation is based on Floquet states j`; m > following the procedure developed by Shirley[11]. The so called called Floquet matrix for the case of two alternating quantum wells is given by (E,mh!, [E o +(,1)`]`0` m0 m = V m 0 m(`0;`,1 + `0;`+1)+ 1 eaf ``0`( m0 ;m,1 + m0 ;m+1); (3) where E is the quasi-energy spectrum of the system, a new motion constant due to the fact that a new quasi Brillouin zone (QBZ) created by the photon eld is associated to the system as well as to the photon energies. F,! are the intensity and angular frequency of the AC eld, respectively; a is the SL period, and e is the electron charge. The dimension of the matrix is given by L(M +1), where L is the number of sites, while M is the maximum of the photon index, given by a convergence criterium: no level crossing at the QBZ edge, being the rst one spanned in the range,h!= Eh!= []. In what follows we represent the eigenvalues of the Floquet matrix (quasi-energies) versus the intensity of the electric eld, in units of potential drop by a period of the superlattice, eaf. We consider AC external elds with wavelengths that are many times longer than the length of the superlattice and all are linearly polarized along the superlattice growth direction. The frequency will be constant along the present analysis, h! = 0:5 mev, but the tight-binding parameters will be varied throughout the work. 1.0 - -1.0 0 1 3 m=0 1 m=+1 m=-1 1 m=0 Figure 1. Dressed Minibands corresponding to a linear chain with L =8,V =0: mev, E g =0:1 mev, M = 40. We observe a DL similar to an isolated miniband. We rst analyse a dimerized superlattice obtained by alternating two dierent quantum wells. In Fig.1 the case for high frequency limit, i.e. when E g h!, is shown. Here the case of M = 8 sites with a hopping parameter V =0: mev, E g =0:1 mev and L = 40 photons is simulated. The number xm= m in Fig.1 and others represent the position in energy of the dressed miniband x = 1 (fundamental) or x = (excited) due to the absorption (+) or emission (-) of m photons. The DL of replicas of the two minibands obeys to the ZOBF roots distribution (J 0 (eaf=h!)) and the memory of the DL of replicas of an isolated miniband, E g = 0 mev, remains[1]. This type of regime is valid for low and high intensities of AC eld and this behaviour is predicted by an analytical equation obtained through the gauge transformation hk,! hk + ea(t) [, 3] also discussed by Zhao[9]: eaf E(k;!) = Eg + V J 0 cos ( ka 1= h! ) : (4) By varying the tight-binding parameters, the system will evolve from high to low frequencies even when the AC eld frequency remains constant. As E g increases, the collapses mentioned above disappear and the miniband replicas evolves to a shape where other dierent collapses begin to appear. - 0 1 3 m=0 1 m=+1 m=-1 1 m=0 Figure. Dressed minibands corresponding to a linear chain with L =8, V =0:meV, E g =0:5 mev and M =40 (dots).two level system L = with same parameters (circles). The case E g =h! =0:5 mev is very interesting to observe, Fig.. Here, at low intensities there is a collapse very similar to DL of replicas of an isolated miniband where the ZOBF roots are now associated to the argument e(a)f=h!. However, due to dynamical Stark eect at high eld intensities the two minibands

Brazilian Journal of Physics, vol. 9, no. 4, December, 1999 687 collapses in a way resembling the corresponding two level system (single pair of sites). At these collapses the dimerized superlattice miniband behaves as an isolated set of dimers. At intermediate eld intensities the miniband width is greater and a dynamic breakdown occurs, separating the two limits described above. These characteristics are better observed in Fig.3, for E g =:0 mev. At lowintensities, the DL of isolated minibands replicas are well dened, at eaf 0:6; 1:3 mev, related to zeros of J 0 (e(a)f=h!). At high intensities there are collapses of dressed isolated dimers, eaf 3:8 mev; while a dynamic breakdown of the dressed minibands occurs at eaf E g. Just beyond the dynamic breakdown line a rst induced analog of an insulator-metal transition due to total suppression of a Peierls-like instability may be observed. The many aspects discussed above can be better visualized in a density of states (DOS) representation, Fig.4. Here we start from the spectra of dressed minibands for a linear chain with L = 0 and M = 90, while the other parameters are the same as in Fig.3. The DOS of dressed minibands are spanned in the rst QBZ. In Fig.4.(a), the DOS related to coupled miniband replicas when they are collapsing like dressed isolated minibands (low eld intensity) is shown. The surface states are in the gap between both miniband replicas, as can be seen in the gure. In Fig.4.(b), the DOS in the the region of dynamic breakdown of the miniband replicas, at eaf = : mev, is represented. The minibands have lost their isolated superlattice miniband identity and begin to predominate their dimer identity. Signatures of an insulator-metal transition, induced dynamically by the AC eld, is show in Fig.4.(c) at eaf =:8 mev. Here a clear single band like DOS can be observed, revealing the suppression of the originally imposed dimerization for this particular eld intensity. This analog to a Peierls instability is supressed at certain eld intensities, whenever eaf > E g as in Fig.4.(c), i.e., the AC eld reduces the gap, dynamically leading to equal eective barrier widths and equal eective quantum wells. Finally, Fig.4.(d), shows the DOS of the collapse of all dimers at eaf =3:76 mev. Clearly we observe two dierent regimes of DLs, when E g h!. Atlowintensities, we have the DL of isolated minibands with the related collapses remaining for any value E g h!. At high intensities, there are collapses of dimers only when E g =h! = n, n is integer. Out of this condition the dimer collapses evolve to a double collapse structure that remains for high eld intensities, Fig.5. 1 m=+3 m=- 1 m=+ m=-3-0 1 3 4 Figure 3. Dressed minibands corresponding to a linear chain with L =8,V =0:meV, E g =:0 mev and M = 40. There are two DL of isolated minibands at eaf 0:6; 1:3 mev, and a collapse of the minibands at eaf 3:8 mev, and a induced eld analog of an insulator-metal transition at eaf :8 mev. Density of States (a) (c) eaf=.8 eaf=1.3 eaf=. eaf=3.76 - - Figure 4. The DOS for a linear chain with L = 0, V =0:, E g =:0 mev, h! =0:5 mev and M = 90 is shown. (a) DL of isolated minibands at eaf = 1:3 mev; (b) dynamic breakdown of the minibands at eaf =: mev; (c) transition to single-band DOS induced by the eld at eaf =:8 mev; and (d) collapse of the dimers at eaf =3:76 mev. - (b) (d) 0 4 6 Figure 5. Dressed minibands corresponding to a linear chain with L =8,V =0:meV, E g =1:6 mev and M = 40 photons. The system is out of resonance condition E g=h! = n and a double structure of dimer collapses for high intensities is observed.

688 P. H. Rivera and P. A. Schulz The dimerization by alternating the barriers leads to a more involved physical picture, which has been only partially addressed. The model for this situation is implemented by simply alternating the hopping parameters, while keeping the atomic site orbital energy xed throughout the linear chain, Eq.(1). In the high frequency limit an analytical exprression for the dressed spectra is obtained in a similar way as for the previous case. Here: q E(k z )= (V1 + V )+V 1V cos(k z a) eaf J o h! where the gap, in function of the eld intensity, isde- ned by E g =jv 1, V jj 0 (eaf=h!) and the miniband width by E =V 1, considering that jv >V 1 j. This analytical solution [10] is indeed a good approximation for the numerical results, as shown in Fig.6. Comparying with Fig.1, we already see that both dimerization procedures, although leading to qualitatively similar electronic structures in absence of AC elds, imply in completely dierent behaviours for the corresponding dressed spectra. - 0 4 Figure 6. Dressed minibands of a linear chain with L =1 and M = 60; V 1 =0:15 mev and V =0:5 mev, and h! =0:5 mev. E g =0:5 mev and E =0:5 mev at eaf =0. In the scenario given by this second dimerization procedure, the interplay between intra and inter miniband coupling is of paramount importance. In the low frequency limit, isolated miniband behaviour as a function of eld intensity may be clearly identied, whenever the miniband width is less than the eld frequency. On the other hand, signatures of this behaviour survive for very high eld intensities, as can be seen in Fig. 7. In contrast to what has been shown for the dimerization by alternating quantum wells, no clear dynamic breakdown intensity region can be traced and no clear resemble of a two level system is found. Actual superlattices should show characteristics involving both procedures discussed in this work. Further work is necessary in order to verify how robust the features analysed here, like the insulator-metal transition, as well as the dynamic breakdown, are in front of deviations of the ideal dimerization conditions. - 0.6 1.38.16.9475 3.735 0 4 Figure 7. Dressed minibands of linear chain with L = 1 and M = 60. V 1 =0:15, V =1:15 mev, and h! =0:5 mev. E g =:0 mev and E =0:3 mev at eaf = 0. The vertical lines indicate the ZOBF roots. In conclusion, in dimerized SL for alternating quantum wells there are three dierent dynamic localization. As isolated minibands when h! < E g and as non coupled minibands for h! > E g. The other regime resemble to dimer collapses for (h!=e g )=n<(eaf=e g ) and a eld induced metal-insulator like transition due to the break of like Peierls instability is observed. Also a dynamic breakdown occur at eaf E g. Although the observability of these eects deserves further work, the present results are for parameters that resemble typical semiconductor systems. The frequency h! = 0:5 mev corresponds to 0.1 THz, while miniband dispersion and gap of the order of mev or less are typical for GaAs/AlGaAs superlattices with periods of a few hundred Angstroms, corresponding to eld intensities, as shown in the gures, of the order of 10-100 kv/cm, which are usual values [7]. The authors acknowledge the nancial supports of Fundac~ao de Amparo a Pesquisa do Estado de S~ao Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Cientco e Tecnologico (CNPq). References [1] E. Gerck and L. C. M. Miranda, Appl. Phys. Lett. 44, 837 (1984) [] M. Holthaus, Phys. Rev. Lett. 69, 351 (199)

Brazilian Journal of Physics, vol. 9, no. 4, December, 1999 689 [3] M. Holthaus, Z. Phys. B 89, 51 (199) [4] M. Wagner, Phys. Rev. B 49, 16544 (1994) [5] P.S.S. Guimaraes et al, Phys. Rev. Lett. 70, 379 (1993) [6] B. J. Keay et al, Phys. Rev. Lett. 75, 410 (1995) [7] D. Hone and M. Holthaus, Phys. Rev. B 48, 1513 (1993) [8] K. Drese and M. Holthaus, J. Phys.: Cond. Matter 8, 1193 (1996) [9] X-G. Zhao, J. Phys.: Cond. Matter 9, L385 (1997) [10] S-Q. Bao, X-G. Zhao, X-W. Zhang, W-X. Yan, Phys. Lett. A 40, 185 (1998) [11] J. H. Shirley, Phys. Rev. 138, B979 (1963) [1] P. H.Rivera and P. A.Schulz, Proc. 4 th Int. Conf. on Phys. of Semicond., Jerusalem, Israel; Ed. David Gershoni, World Scientic, Singapore (1998)