Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

Similar documents
Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

The Study of Structure Design for Dividing Wall Distillation Column

Temperature Control in Autothermal Reforming Reactor

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

SIMULATION ASSESSMENT OF CONTINUOUS SIMULATING MOVING BED CHROMATOGRAPHY PROCESS WITH PARTIAL FEED AND NEW STRATEGY WITH PARTIAL FEED

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Effect of Precipitation on Operation Range of the CO 2

SUPERCRITICAL FLUID CHROMATOGRAPHY PROCESS OPTIMISATION OF THE SEPARATION OF TOCOPHEROL HOMOLOGUES

NOTICE: this is the author s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the

History and Status of the Chum Salmon Enhancement Program in Korea

Dextran and fructose separation on an SMB continuous chromatographic unit

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Chiral Separation of Propranolol Hydrochloride Through an SMB Process Integrated with Crystallization

Study of a Simulated Moving Bed (SMB) Preparative Liquid Chromatographic Appliance and Technology

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Surface Reaction Modeling for Plasma Etching of SiO 2

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

The enrichment of loxoprofen enantiomer by 6-columns simulated moving bed chromatography

Determination of Retention Factors of Aromatic Compounds by Gradient-Elution Reverse-Phase High Performance Liquid Chromatography

Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Application of Multi-Objective Optimization in the Design of SMB in Chemical Process Industry

Control of incomplete separation in simulated moving bed chromatographic processes

Adsorption Performance of Proteins to CM Sepharose FF and DEAE Sepharose FF Adsorbents

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

A L A BA M A L A W R E V IE W

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Comparison of Adsorbent Behavior in Glucose/Fructose Separation by Simulated Moving Bed (SMB) Chromatography

Residence time distribution and dispersion of gas phase in a wet gas scrubbing system

Experimental evaluation of a modified fully thermally coupled distillation column

Gradient SMB Chromatography. Thomas Birger Jensen

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

Application of Simulated Countercurrent Moving-Bed Chromatographic Reactor for MTBE Synthesis

P a g e 5 1 of R e p o r t P B 4 / 0 9

Ion-Exchange Countercurrent Separation of a Mixture of Acids on Polymeric Sorbent An-511

Optimal Operation of an Industrial-Scale Parex Process for the Recovery of p-xylene from a Mixture of C 8 Aromatics

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

Nonlinear isotherm of benzene and its derivatives by frontal analysis

1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy

Using Model Order Reduction to Accelerate Optimization of Multi-Stage Linear Dynamical Systems

Learning High-Dimensional Data with Artificial Neural Networks. Université catholique de Louvain (Belgium) Machine Learning Group

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Process Biochemistry

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (speek/nafion): Effect of Binder Content

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

Design, Synthesis and Biological Evaluation of Novel. Deguelin-Based Heat Shock Protein 90 (HSP90) Inhibitors

SUPERCRITICAL FLUID CHROMATOGRAPHY AS SUCCESSFUL SEPARATION TOOL IN CHEMICAL AND PHARMACEUTICAL INDUSTRY

Kinetic Analysis of Partial Decomposition of Starch in Hot-Compressed Water

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

8. Relax and do well.

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

n

The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO 2


VALIDATION OF AN ACTUAL SIMULATED MOVING BED UNIT TOWARDS ITS AUTOMATION CONTROL AIMING TO SEPARATE PRAZIQUANTEL ENANTIOMERS

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

A New Mass Transfer Model for Cyclic Adsorption and Desorption

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

T h e C S E T I P r o j e c t

A Tuning of the Nonlinear PI Controller and Its Experimental Application

Retention mechanism of some solutes using ionic liquids as mobile phase modifier in RP-high-performance liquid chromatography (HPLC)

Electronic Supplementary Information. Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered

Solutions and Ions. Pure Substances

MODEL-BASED OPTIMIZATION AND CONTROL OF CHROMATOGRAPHIC PROCESSES

Comparison of the Adsorption Dynamics of Air on Zeolite 5A and Carbon Molecular Sieve Beds

Chiral Separation Techniques: A Practical Approach

Chiral Separation of Arylalcohols by Capillary Electrophoresis Using Sulfonated β-cyclodextrin and Ag Colloids as Additives

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

8. Relax and do well.

Chem 51, Spring 2015 Exam 8 (Chp 8) Use your Scantron to answer Questions There is only one answer for each Question. Questions are 2 pt each.

Separation of 1,3-propanediol from Aqueous Solutions by Ion Exchange Chromatography

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

8. Relax and do well.

Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration

8. Relax and do well.

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

Potentielle Anwendungen der Flüssig-Flüssig-Chromatographie in der Lebensmittelindustrie

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

CHEM 10123/10125, Exam 2

,. *â â > V>V. â ND * 828.

Optimization of Batch Distillation Involving Hydrolysis System

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Selective Recovery of Indium from Acid Sulfate Media with Solvent Impregnated Resin of Bis(4-cyclohexylcyclohexyl)phosphoric Acid as an Extractant

BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL. Qing-Xi Chen ~, and Hai-Meng Zhou*

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

Successive Extraction of As(V), Cu(II) and P(V) Ions from Water. Using Surface Modified Ghee Residue Protein

Modelling and simulation of nonlinear chromatographic separation processes: a comparison of di!erent modelling approaches

Transcription:

Korean Chem. Eng. Res., Vol. 43, No. 6, December, 2005, pp. 715-721 Simulated Moving Bed 크로마토그래피를이용한프럭토올리고당의정제 j mp * l p, *r l 402-701 p}e n 253 (2005 9o 30p r, 2005 11o 24p }ˆ) Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography Nan-Suk Oh, Chong-Ho Lee* and Yoon-Mo Koo Department of Biological Engineering, *ERC for Advanced Bioseparation Technology, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-701, Korea (Received 30 September 2005; accepted 24 November 2005) k SMB Š p, v, Š m ( dšv, dšv)p t Š m p l o n m. SMB nr s p p rp e t l pp v k p (triangle theory)p rvž(standing wave) qpp. l pp e l m p p. Š m p nr t l p. pp q o r ˆl p l r m p l rn m. v rn dšv, dšvp p p p p v t vp Š m l l l m p v kk. Š m p p p m s l d p l. vl r } l ph sr p m l e p r eˆ p. h Abstract The SMB chromatography is used to obtain high purification of fructooligosaccharides (FOS), the mixture of kestose and nystose. SMB operation condition is usually determined by triangle theory or standing wave design when reactions do not occur within columns during experiment. Some of the reactions in columns may considerably affect experimental results. FOS can be hydrolyzed and converted into glucose and fructose during operation. To include the effect of reaction, the concentrations of each component at steady state after hydrolysis were used in simulation. The obtained simulation values are well matched with experimental results except sucrose. For sucrose, the experimental results were different from expected one due to the existence of an intermediate component. FOS is easily hydrolyzed and converted into glucose and fructose in more acidic condition and at higher temperature. Hydrolysis reaction can be prevented by the pretreatment of separation resin with NaOH as well as operation under lower temperature. Key words: Simulated Moving Bed, Fructooligosaccharides, Sucrose, Glucose, Hydrolysis 1. m p q 2~10 p, p rp r, d p pp,, r, rqqn p r p p. m p p p tep 1970 l v l, 1980 l Š m (fructooligosaccharides)p n eq m. Š m p, kž, kdž d, nl,,, ƒ p k}, p e l o p }l vpv k p. p o Aureobasidium sp[1, 2] To whom correspondence should be addressed. E-mail: ymkoo@inha.ac.kr Aspergillus niger[3] pn l vm p eˆ pp lrp p. Š m p vp β(2 1)p o l p l p vp p dšv(β-d-fru((2 1) 2 -α-d-glucopyranoside, GF 2 )), dšv(β-d-fru((2 1) 3 -α-d-glucopyranoside, GF 3 )), Š e- dšv(β-d-fru((2 1) 3 -α-d-glucopyranoside, GF 4 )) pp l l p p l GF n p ˆ [4]. Fig. 1l GF n p r sep ˆ l. Š m p l op rp pep n l p e ~ r f p. Š m p ol l vm pp vp l o rr rp e ~k. Š m 715

716 m ps o Fig. 2. Schematic explanation of simulated moving bed. Fig. 1. Chemical structure of fructooligosaccharides. n=1: 1-kestose, n=2: nystose, n=3: fructofuranosylnystose p rp n tn. p rp rr rl j p p Š f l n p + 2+ Na Ca ~ p kpm v rn pp p p e l ~ vp p n p. Š m p p phm p m l pl [5, 6]. p ml m k n CO 2 m p l k p p v n r t p s p p., rp p p p rn r l p m l nr. m p d s l p lv. p o vp r} rp p m l rp p lrk Š m p ep tp p. SMB p 1960 UOP l p k [7, 8], p pn o p-xylenel rk kp p v~ [22]m r l[9, 10, 21] k v[11, 12], v m Œ [13, 23] k kp v l. SMBp o pp o pr e p nvpp f r p p p p l rp p [14~16]. rm p k nvp vp k p p nvl extract p rm p nvp vp r p p nvl raffinate p. p l rp l l pp p p, extract, raffinate [17, 18]. SMB 4 p lp p m p o l lp tn l p [19]. rp 4 p lp l p SMB Fig. 2l ˆ l. SMB p l rp e rl, p p p lp p. SMB e p q v p, p rp pq e p m srp SMB e p. pp pv k l e t pp o43 o6 2005 12k pl m l. e l SMB pn l l rp Š m p q m. p e l rp k o l l vp p p p mp s p Š m p pl vp s p er m e m p m. p q o SMB e s extractm raffinatel lp e l r ˆl vp kp l r l l l e m k., SMB e s pp eˆ o v r } l ph t l sr m l. p p r p f pp mpp p m. 2. h m p ež p e ~ r pn m, v, dšv, dšv pp 45 Brix p. m p r} rp f ppm vm kpm v e v p p r m. p p 3 v n m v Finex l p p s dˆp l p rp mp pm(so 3 )p p kpm v f + Na ~ ˆp. SMB e p l 2 j, 8 p p (21.5 2.5 cm)p n mp Omni l p m. p p o extractm raffinate v o 4 p n lp FPLC 2 (amersham phamacia biotech), HPLC 2 (young lin instrument) pn l o p sr m. p p e p n o rp 3 v n m. v r } r p o 4ÍNaOH 3.5 ml/min(2 bed/hour)p p eˆ 3 v t p ph v kl tl., 65 Cm o 50 o C l m l m p m. s

l r o 12e k m p l pr o p q eˆ p p r m. p r rp p Kromasil 100-10 NH 2p(250 4.6 mm) HPLC p pn mp p p acetonitrile/water/v/v/75/25s p acetonitrilep HPLCnp J. T. Bakerl p m. l n Shimadzu p r p LC-6AD, SIL-10AD VP q tp, RID-10A r HPLC edšp. 3. 3-1. j y m o l tn vp, v, dšv, d Šv f r~p 21Í, 24Í, 36Í, 16Í p. p vp p r kk o r p p pn m. l kp 20Í, 40Í, 60Í, 80Í, 100Í 5 e mp Fig. 3l ˆ l. e p lp p (1) ep rn l p l p k r l kp mp p (2)ep pn l m [20]. Table 1l ˆ l. Š m p rr 717 Q i + 1 = Q i ( V F V 0 )( C i + 1 C i ) + ------------------------------------------------------ Va Q = ac (2) l Q r p vp k, C p l k p vp, V F ~, V 0 o~ p, V a r p, V c p p. 3-2. j er e p nr r e p m rp. nrp rs p o rvž p p pn m. rvž p p SMB r qpp o Ma and Wang[15]p m k m k l e l rn p. p p o nvp vp p l IVl, ˆ p l IIl p pm d nvp Table 1. Linear isotherm parameters of glucose, sucrose, kestose and nystose Glucose Sucrose Kestose Nystose a 0.4005 0.2372 0.1563 0.0848 R 2 0.9999 0.9979 0.9957 0.9881 (1) Fig. 3. Determination of isotherm by frontal test. (a) glucose, (b) sucrose, (c) kestose, (d) nystose. Korean Chem. Eng. Res., Vol. 43, No. 6, December, 2005

718 m ps o Fig. 4. Design for four zone SMB process : standing wave design. --- -- : nystose, -.-.-: kestose, -----: sucrose,...: glucose Table 2. Operation condition of SMB Feed Extract Raffinate Eluent Recycle Switching time 0.30 ml/min 1.68 ml/min 1.20 ml/min 2.59Gml/min 5.65 ml/min 8.52 min vp p l, ˆ p l IIIl plk l. l IIm III v p rp p lv l I IV v p mmp v o p p p mt. p ov o lp o nvp tn p v r p m p v k qp vr p m l ps qpl p. p e l vr p m p qpp rn m. e l n p, v, dšv, dšvp v. Š m p raffinate o l,, v extract o l l o l1p p ˆ, l 2 dšvp ˆ, l3p vp, l4 dšvp p p qp m. p ˆ p Fig. 4l ˆ l., p p p llv nrs p Table 2l e p s p e p m. ol l mp s p p l. pp m v kp p q o e s p l r l m. l r ep (3)e, Table 3 m e p Fig. 6l ˆ l. p v e rl m ll l rn l ˆ l. Table 3. Concentration of component in feed before and after Hydrolysis Before(mg/ml)) After(mg/ml) Glucose & fructose 128.97 345.57 Sucrose 120.39 78.15 FOS 300.6 126.22 o43 o6 2005 12k Fig. 5. Comparison of experimental and theoretical concentration profiles: without reaction at the end of a switch time. (a) ---- : simulation of sucrose, -----: simulation of glucose : experiment of sucrose, : experiment of glucose (b) ---- : simulation of kestose, -----: simulation of nystoseg : Gexperiment of kestose, : experiment of nystose C Feed *v Feed = C Extract *v Extract + C Raffinate *v Raffinate o el C, v o p ˆ. Fig. 5l p p, v kp p p m p p e p, vm Š m p l m p e p ll. pp v kp n l n p p Fig. 6 p rn l dšv, dšvp p m p p mp vp p p m. po v Š m l vp s vp p rp t vp l e m p v kk. 3-3. j m 3-3-1. php m Š m l m p pq t php (3)

Š m p rr 719 Fig. 7. The ph change in column. : without NaOH 65 o C, :Gwith NaOH, 65 o C, :Gwith NaOH, 50 o C. Fig. 6. Comparison of experimental and theoretical concentration profiles: with reaction at the end of a switch time. (a) --- - :Gsimulation of sucrose, -----: simulation of glucose : experiment of sucrose, : experiment of glucose (b) ---- : simulation of kestose, -----: simulation of nystose : experiment of kestose, : experiment of nystose [5, 6]. v r } l p php m php l r o e p m. e p 65 C m r v 40Í NaOH } o r p s l m p 12e k q eˆ 2e p e v m. p e p ph r HPLC l p pp r m. php r } r p pp Fig. 8(a), (b)l ˆ l. ph r } rp p l Š m p. p 12e r } r dšv p 5.3Í, 33Í, dšv 2.2Í, 12.4Í, v 42.1Í, 67.6Í mp p 347Í, 245Í v m. r } p f p ph t l ov pl p r eˆ pl. 3-3-2. m p m Š m p l m p npp m p [5, 6]. ol l p rp k 50 Brixp l p lv l p r v. r o 50 o C~65 Cp p m l o. m p kk o r } v pn l 50 Cm o 65 Cl m p 12e k q o eˆ 2e p e v l m. 12e 65 Cm o 50 Cp dšv p o 33Í, 88Í, dšv 12Í, 78Í m. v 65 Cl p 67Í o mv 50 Cl kp 114Í o v m. v v po Š m p p v j vp p p m l lp kp k v p., p 65 o C, 50 Cl kp o 245Í, 133Í v m. m l p p Fig. 8p (b), (c) p. 3-4. o m i mi Š m vp kp m p kp v mp pl p ep. vm p p l Š m p p p l v pp p p l pp r kk o e p m. e, Fig. 9m 10l p p v Š m p v kk. pp l pp pl v k l rp l pp (4~6)ep ˆ p. GF3 k 3 GF 2 +F (4) GF2 k 2 GF+F (5) Korean Chem. Eng. Res., Vol. 43, No. 6, December, 2005

720 m ps o Fig. 9. Hydrolysis of sucrose in columns as a function time. : glucose, : fructose, : sucrose, : total concentration Fig. 10. Changes of concentrations in columns as a function time. : glucose, : fructose Fig. 8. Hydrolysis of fructooligosaccharides in columns as a function time. :Gglucose and fructose, :Gsucrose, :Gkestose, :Gnystose (a): with NaOH, 65 o C (b): without NaOH, 65 o C (c): with NaOH, 50 o C GF k 1 G+F (6) G:, F:, GF: v, GF 2 : dšv, GF 3 : dšv o43 o6 2005 12k 4. Š m p on vp l l p p rr rp n tn. q Š m p rr Š p pn pp p e l l rp rp SMB rn m. v f rl n p mp ~ p kpm vm p p p n p ˆl r p r l ml nr. p s l pl v s p rm. SMBp r nrs p r o qpp p p pv kk pp pl m l. SMB n vp l rp o p pp ˆ k pp t ˆl p lv Š m p vp l rp pp n

q. SMB l p vp o p p p p n. p phm p m l d pl p p eˆ o vl r } ph t l ov r p m p v kp p m l s p q pp p., l ~ e p w qp pm p r np p. l q p p r l (ERC)p vo CJ(t)p s k md. y 1. Yun, J. W. and Song, S. K., The Production of High-Content Fructooligo Saccharides from Sucrose by the Mixed-Enzyme System of Fructosyltransferase and Glucose Oxidase, Biotechnol. Lett., 15(7), 573-576(1993). 2. Yun, J. W., Fructooligosaccharides-Occurrence, Preparation, and Application, Enzyme Microb. Technol., 19(2), 107-117(1996). 3. Hidaka, H., Hirayama, M. and Sumi, N. A., Fructooligosaccharide Producing Enzyme from Aspergillus Niger ATCC 20611, Agric. Biol. Chem., 52(7), 1181-1187(1988). 4. Lewis, D., Nomenclature and Diagrammatic Representation of Oligomeric Fructans a Paper for Discussion, New Phytol., 124(5), 583-594(1993). 5. Hogarth, A. J., Hunter, D. E., Jacobs, W. A., Garleb, K. A. and Wolf, B. W., Ion Chromatographic Determination of Three Fructooligosaccharide Oligomers in Prepared and Preserved Foods, J. Agric. Food Chem., 48(11), 5326-5330(2000). 6. L homme, C., Arbelot, M., Puigserver, A. and Biagini, A., Kinetics of Hydrolysis of Fructooligosaccharides in Mineral-Buffered Aqueous Solutions: Influence of ph and Temperature, J. Agric. Food Chem., 51(1), 224-228(2003). 7. Broughton, D. B., Molex Case History of a Process, Chem. Eng. Prog., 64(1), 60-72(1968). 8. Broughton, D. B., Neuzil, R. W., Pharis, J. M. and Brearley, C. S., The Parex Process for Recovering Paraxylene, Chem. Eng. Prog., 66(1), 70-82(1970). 9. Ching, C. B., Chu, K. H., Hidajat, K. and Ruthven, D. M., Experimental Study of a Simulated Counter-Current Adsorption System- VII: Effects of Non-Linear and Interacting Isotherms, Chem. Eng. Sci., 48(7), 1343-1351(1993). Š m p rr 721 10. Pais, L. S., Loureiro, J. M. and Rodrigues, A. E., Separation of 1,1'-bi-2-Naphthol Enantiomers by Continuous Chromatography in Simulated Moving Bed, Chem. Eng. Sci., 52(2), 245-257(1997). 11. Zoltán, M., Melinda, N., Antal, A., László, H., János, A., István, P. and Tibor, S., Separation of Amino Acids with Simulated Moving Bed Chromatography, Journal of Chromatography A, 1075(1-2), 77-86(2005). 12. Xie, Y., Wu, D., Ma, Z. and Wang, N.-H. L., Extended Standng Wave Design Method for Simulated Moving Bed Chromatography: Linear Systems, Ind. Eng. Chem. Res., 39(6), 1993-2005(2000). 13. Hashimoto, K., Adachi, S. and Shirai, Y., Continuous Desalting of Proteins with a Simulated Moving-bed Adsorber, Agric. Biol. Chem., 52(11), 2161-2171(1998). 14. Storti, G., Mazzotti, M., Morbidelli, M. and Carra, S., Robust Design of Binary Counter Current Adsorption Separation Processes, AIChE J., 39(3), 471-485(1993). 15. Ma, Z. and Wang, N.-H. L., Standing Wave Analysis of SMB Chromatography: Linear Systems, AIChE J., 43(10), 2488-2509 (1997). 16. Gentilini, A., Migliorini, C., Mazzotti, M. and Morbidelli, M., Optimal Operation of Simulated Moving Bed Units for Non Linear Chromatographic Separations II. Bi-Langmuir Isotherm, J. Chromatogr. A., 805(1-2), 37-44(1998). 17. Mazzotti, M., Storti, G. and Morbidelli, M., Operation of Simulated Moving Bed Units for Nonlinear Chromatographic Separations, J. Chromatogr. A., 769(1), 3-24(1997). 18. Minceva, M., Pais, L. S. and Rodrigues, A. E., Cyclic Steady State of Simulated Moving Bed Processes for Enantiomers Separation, Chem. Eng. Proc., 42(2), 93-104(2003). 19. Hashimoto, K., Adachi, S., Noujima, H. and Maruyama, A., Models for Separation of Glucose-Fructose Mixture Using a Simulated Moving Bed Adsorber, J. Chem. Engng. Japan., 16(5), 400-423(1983). 20. Wankat, P. C. (Ed), Rate-Controlled Separations, Glasgow, Elservier Applied Science, London and New York(1994). 21. Kim, Y. D., Lee, J. K. and Cho, Y. S., Application of Simulated Moving Bed Chromatography for the Separation Between 2,6- and 2,7-Dimethylnaphthalene, Korean J. Chem. Eng., 18(6), 971-976 (2001). 22. Han, S. K., Yeo, M. S., Park, T. J., Koo, Y. M. and Row, K. H., Chiral Separation of Bupivacaine by Simulated Moving Bed (2) Determination of Optimum Condition by Simulation, HWAHAK KONGHAK, 41(6), 728-735(2003). 23. Park, B. J., Lee, C. H. and Koo, Y. M., Development of Novel Protein Refolding Using Simulated Moving Bed Chromatography, Korean J. Chem. Eng., 22(3), 425-432(2005). Korean Chem. Eng. Res., Vol. 43, No. 6, December, 2005