Diagnosis of Peltamigratus christiei, a Plant- Parasitic Nematode Associated with Warm- Season Turgrasses in the Southern United States

Similar documents
SEM OBSERV ATIONS ON TWO SPECIES OF HOPLOLAIMUS DADAY, 1905 (NEMATODA: HOPLOLAIMIDAE)

Sustainability 101: Just What is Carbon Sequestration? Mary Owen UMass, Amherst, Extension Turf Program

Morphological and Molecular Techniques for the Diagnosis of Nematodes

Distance Learning course Plant pathology and entomology Covered topics

A B 17 µm B, C, D, E 61 µm Figure 1 Boleodorus longicaudatus Camera lucida drawings Photomicrographs

Male reproductive system. Spicule

Description of Hoplolaimus magnistylus n. sp. (Nematoda: HopIolaimidae) 1

Biology and Host-Parasite Relationships of the Spiral Nematode, Helicotylenchus microlobus*

Wheat Rice Corn The parts are often very small Diagnostic microscope Magnifies to 45 x Compound microscope Magnifies to 400 x

Nutsedge Control in Turfgrass practical approaches to consider. Kai Umeda Area Extension Agent

BIOAG'L SCI + PEST MGMT- BSPM (BSPM)

penetrans in Naturally Infested Soil

Thripenema fuscum n. sp. (Tylenchida: Allantonematidae), a Parasite of the Tobacco Thrips, Frankliniella fusca (Thysanoptera) 1

Model of Dry Matter and Plant Nitrogen Partitioning between Leaf and Stem for Coastal Bermudagrass. I. Dependence on Harvest Interval

DNA sequence collection at CNR-IPSP: a resource for nematode identification

Nematol. medit. (2007), 35:

Plant nematodes in South Africa. 7. A check list of plant nematodes from the Fynbos Biome, with a description of Helicotylenchus curatus sp. n.

belonging to the Genus Pantoea

Boxwood Blight. Enhanced First Detector Training

Basic Plant Pathology for Franklin County Master Gardener Volunteers. Nancy J. Taylor Plant Pathology Department Ohio State University

Model of Dry Matter and Plant Nitrogen Partitioning between Leaf and Stem for Coastal Bermudagrass. II. Dependence on Growth Interval

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard

This book focuses mostly on Proteas, but also considers some of the other Proteaceae genera that are more widely cultivated.

North American Bramble Growers Research Foundation 2016 Report. Fire Blight: An Emerging Problem for Blackberry Growers in the Mid-South

Sun Helps Geraniums Poison Japanese Beetles

Weather. One Swing Should Wait til Spring

Diagnosing Plant Problems. A strategy to get started

It is one of the most serious oak diseases in the United States, killing thousands of trees each year.

Florida Friendly Landscapes?

Todd A.Steinlage, Alaska Department of Natural Resources, Division of Agriculture, Plant Materials Center

HOMEOWNER PLANT DISEASE CLINIC REPORT Holly Thornton, Homeowner IPM Specialist

Plant Pathology Fact Sheet

Avg Max Temp Avg Min Temp 2012 Max Temp 2012 Min Temp. Oct 1-31, 2012 Avg: 54.5 F Dept. from Norm: - 1.5

Just a Bit Outside. Weather

Hemicaloosia vagisclera n. sp. (Nematoda: Caloosiidae) from Bermuda grass in Florida and its phylogenetic relationships with other criconematids

WE LIVE in a complex world. Many

Soybean stem fly outbreak in soybean crops

Weed Control Programs That Utilize Less Herbicides

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad

Certified Arborist. Diagnosis and Plant Disorders. What is a healthy plant?

Redescription of Steinernema scapterisci Nguyen and Smart, 1990: (Steinernematidae)

Intra-specific morphological and morphometric variability of Radopholus similis (Cobb, 1893) Thorne, 1949

High genetic diversity and geographic subdivision of three lance nematode species (Hoplolaimus spp.) in the United States

Rhizoctonia solani AG 1-IA

Preparing for Snow Mold Applications

MNLA Certification Manual Learning Objectives

Parasites of larval black flies (Diptera: Simuliidae) in Thailand

New Insect Pests of Golf Courses. Wendy Gelernter PTRI

1. Introduction to scales 1. The Hemiptera (True bugs) 2. How bugs got their name 3. Difference between Heteroptera and Homoptera 4.

THE FAMILY TRICHODORIDAE: STUBBY ROOT AND VIRUS VECTOR NEMATODES

Howardula dominicki n. sp. Infesting

Plant Health and Protection

Entomology Research Laboratory The University of Vermont South Burlington, Vermont USA

Comparative molecular and morphological characterisations in the. nematode genus Rotylenchus: Rotylenchus paravitis n. sp.


Entomology NEMATODES PARASITIZING SUGARCANE IN CUBA. J.P. O'Relly and J.R. PCrez MiliAn. Sugar Cane Research Institute, Academy of Sciences, Cuba

Weeds Will Be With Us So, we need to develop weed management plans.

Turf Growth and Development

ortuner, R. (Ed). Nematode Identification and Expert Technology, New York & London, Plenum Press: 1-7. (1988)

Plant disease. Plant Diseases: Learning objectives: Plant Disease: Any physiological or structural abnormality that is harmful to the plant

DITYLENCHUS LEPTOSOMA SP. N. (NEMATODA: TYLENCHIDA), A PARASITE OF CARPINUS LEA VES IN KOREA

Screening Aid. Pine Sawyer Beetles Monochamus sutor (Linnaeus) and M. alternatus Hope. Joseph Benzel

Effective Management of Hard-to- Control Weeds in Zoysiagrass Lawns

Japanese Beetle. Popillia japonica

Unit G: Pest Management. Lesson 2: Managing Crop Diseases

Kansas State University Department of Entomology Newsletter

LEBANON LBS. (22.7 KG) NET WEIGHT. KEEP OUT OF REACH OF CHILDREN CAUTION See back panel for First Aid and additional Precautionary Statements.

BIO 111: Biological Diversity and Evolution

Leaf and Stem Feeding Aphids

Keywords. Podosphaera leucotricha, scanning electron microscopy. Summary

Pest Species of Copitarsia Hampson in the Neotropics: Identification and Hosts

Rose Black spot-diplocarpon rosae

Plant Disease Introduction. Larry A. Sagers Utah State University Extension Regional Horticulturist

Description of Meloidoderita polygoni n. sp. (Nematoda: Meloidoderitidae) from USA and Observations on M. kirjanovae from Israel and USSR 1

non-host plants immunity basic resistance basic incompatibility avoidance pathogenicity factor host plant basic compatibility disease symptoms

Organism Interactions in Ecosystems

Chapter 6 Population and Community Ecology

Serviceberry Leaf scorch (Abiotic disorder)

Sclerotinia Stem and Crown Rot of Alfalfa: Symptoms & Disease Cycle

Detailed Course Outline

Prepare for Spring Ghouls. Weather

Plants Get Sick Too! An Introduction to Plant Diseases. Sarah D. Ellis Michael J. Boehm Department of Plant Pathology

A new species of Meiodorus Siddiqi, 1976 (Nematoda : Tylenchida) from Cordoba, Argentina

ENTOMOLOGY. Undergraduate Study Minor - Insect Science. Graduate Study. Minor - Emerging Global Diseases. Entomology 1

The field symptoms of sorghum ergot are

GUARANTEED ANALYSIS O 5. )... 5% Sulfur (S) % 1.8% Combined Sulfur (S)

Phenotypic Adaptations in Pasteuria spp. Nematode Parasites

On the Validity of the Name teyahalee as Applied to a Member of the Plethodon glutinosus Complex (Caudata: Plethodontidae): A New Name

Welcome to the Iowa Certified Nursery Professional Training program Module 7: Introduction to Plant Diseases and Insects.

EVALUATION OF PARASITES AND PREDATORS OF PLANT PARASITIC NEMATODES'

Why are plant pathogens under-represented in eco-climatic niche modelling?

D I M E N S I O N 0.13 %

FERTILIZER. With DIMENSION 0.13% PRE & POSTEMERGENCE ANNUAL GRASSY WEED CONTROL

Databases of host species to support research on plant pests: the case of Xylella fastidiosa

TWQ new species of Puramphidelus Andrassy, 1977 (Nematoda : Alaimidae) from Manipur, India

3 Numbers in parentheses refer to literature cited.

How to Maximize Preemergence Herbicide Performance for Summer Annual Weeds

Identifying Thrips & Their Damage in New England Greenhouses

Post-doc fellowships to non-eu researchers FINAL REPORT. Home Institute: Centro de Investigaciones Marinas, Universidad de La Habana, CUBA

Model Analysis of Corn Response to Applied Nitrogen and Plant Population Density

Transcription:

2003 Plant Management Network. Accepted for publication 4 April 2003. Published 13 May 2003. Diagnosis of Peltamigratus christiei, a Plant- Parasitic Nematode Associated with Warm- Season Turgrasses in the Southern United States W. T. Crow, Entomology and Nematology Department, University of Florida, Gainesville 32611; and N. R. Walker, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078 Corresponding author: W. T. Crow. wtcr@ifas.ufl.edu Florida Agricultural Experiment Station Journal Series No. R-09182. Crow, W. T., and Walker, N. R. 2003. Diagnosis of Peltamigratus christiei, a plant-parasitic nematode associated with warm-season turfgrasses in the southern United States. Online. Plant Health Progress doi:10.1094/php-2003-0513-01-dg. Introduction Various turfgrass species are used as ground cover for residential, commercial, right-of-way, and recreational purposes in the southern United States. Increases in population density and urbanization in the South have led to an increase in both warm-season turfgrass use and its importance as a horticultural commodity. In many southern states, turfgrass and related industries are significant contributors to local and regional economies. The increasing importance of turfgrass has led to greater emphasis on diagnosis and management of turfgrass pests, including plant-parasitic nematodes. Turfgrass samples comprise more than 90% of the diagnostic samples evaluated in the University of Florida Nematode Assay Laboratory. Plant-parasitic nematodes are common and destructive pests of both warmand cool-season turfgrasses. The most common warm-season grasses in the southern United States include bermudagrass (Cynodon dactylon), St. Augustinegrass (Stenotaphrum secundatum), bahiagrass (Paspalum notatum), centipedegrass (Eremochloa ophiuroides), and zoysiagrass (Zoysia spp.). These grasses are often found growing on sandy soils favoring damaging populations of plant-parasitic nematodes. The population diversity and distribution of plantparasitic nematodes in numerous turfgrass ecosystems have been characterized (5,8,13,15,16). In these studies, nematodes from the genera Belonolaimus, Mesocriconema, Helicotylenchus, Hemicycliophora, Hoplolaimus, Paratrichodorus, Pratylenchus, Meloidogyne, Trichodorus, and Tylenchorhynchus were associated with both warm- and cool-season grasses. Belonolaimus longicaudatus and Hoplolaimus spp. are among the most destructive turfgrass nematodes. In addition, Meloidogyne spp. can be destructive to various warm-season turfgrasses, such as bermudagrass, when grown on sandy soils. Peltamigratus christiei (Fig. 1A and 1B) has been reported from Florida turfgrass ecosystems for many years (4) and is the only species of Peltamigratus reported parasitizing warm-season turfgrasses. Originally thought to be confined to tropical climates, the authors have recently identified P. christiei associated with bermudagrass in California, Mississippi, and Oklahoma. On some crops, Peltamigratus spp. can be easily mistaken for nematodes in the genera Scutellonema or Aorolaimus. However, on turf P. christiei is most often confused with the common turf parasites Hoplolaimus spp. and Helicotylenchus spp.

A Fig. 1. Female (A) and male (B) of Peltamigratus christiei. B When viewed under low magnification, P. christiei may be confused with other plant-parasitic nematodes, including Hoplolaimus spp. and Helicotylenchus spp. Correct diagnosis of this nematode is important, as its virulence is most likely different from nematodes in these other genera. Depending on the type of nematode for which it is mistaken, misidentification could result in an unnecessary nematicide application or lack of a nematicide application where it would be beneficial. The objective of this report is to describe P. christiei and the characteristics which can be used to readily distinguish it from Hoplolaimus spp. and Helicotylenchus spp. when examining nematode populations from warm-season turfgrasses. This article emphasizes features that can be observed with a dissecting, or low-magnification inverted microscope rather than those requiring the use of high resolution microscopy. Hosts Bermudagrass (Cynodon dactylon), St. Augustinegrass (Stenotaphrum secundatum), bahiagrass (Paspalum notatum). Pathogen Peltamigratus christiei (Golden and Taylor, 1956) Sher, 1964 (Nematoda: Hoplolaimidae); syn. Rotylenchus christiei (Golden and Taylor, 1956), Scutellonema christiei (Golden and Taylor) Andrassey, 1958, Aorolaimus christiei (Golden and Taylor) Fortuner, 1987. Taxonomy Peltamigratus christiei was first described by Golden and Taylor (4) as Rotylenchus christiei. Sher (10) later placed R. christiei in a new genus Peltamigratus. Fortuner (2) synonymized the genus Peltamigratus with Aorolaimus. However, Siddiqi (12) resurrected the genus Peltamigratus. In this paper, we retain the genus name Peltamigratus as in Siddiqi (12). Symptoms No symptoms specific to P. christiei on turfgrasses have been described, but are probably typical to those caused by other ectoparasitic nematodes on turfgrasses. These include irregular patches of declining turf that exhibit wilting, chlorosis, thinning, or death (14). These symptoms have been observed in areas with high populations of P. christiei in the field (Fig. 2). Affected roots may appear abbreviated, darkened, or exhibit rotting.

Fig. 2. Irregular patches of declining turf in a St. Augustinegrass lawn associated with high (> 300/100 cm 3 of soil) population densities of Peltamigratus christiei. Host Range Cerothamnus sp. (wax myrtle), Crinum americanum (swamp lily), Cynodon dactylon (bermudagrass), Hibiscus cannabinus (Indian hemp), Paspalum notatum (bahiagrass), Paspalum vaginatum (seashore paspalumgrass), Quercus sp. (oak), Sabal spp., Stenotaphrum secundatum (St. Augustinegrass), Theobroma cacao (cacoa). Geographic Distribution California, Florida, Mississippi, and Oklahoma in the United States. Peltamigratus christiei has also been reported in Brazil (3). Pathogen Isolation Peltamigratus christiei is primarily an ectoparasite of roots. Therefore, any of the common methods of extracting nematodes from soil (7) should be adequate for isolating P. christiei. The most common methods used by nematode diagnostic services are variations of sugar-flotation with centrifugation or Baermann funnel methods. Pathogen Identification On turf, P. christiei is most commonly mistaken for nematodes in the genera Hoplolaimus and Helicotylenchus, which are widespread turfgrass parasites (Fig. 3). The most easily identifiable morphological features that distinguish P. christiei from nematodes in these genera are body size, body position when dead, vulval position, tail shape, and the presence of epiptygmata. Fig. 3. Peltamigratus christiei (a), Hoplolaimus galeatus (b), and Helicotylenchus pseudorobustus (c). The female body length of P. christiei is 0.67 to 0.87 mm (10). The female body length of Hoplolaimus galeatus, the most common species of lance nematode associated with turf, is 1.24 to 1.94 mm (9). The female body lengths of the two most commonly encountered Helicotylenchus spp. associated with turf in Florida, H. pseudorobustus and H. dihystera, are 0.60 to 0.82 mm, and 0.59 to 0.79 mm, respectively (11). Therefore, P. christiei is shorter than Hoplolaimus spp., but its range overlaps that of Helicotylenchus spp. (Fig. 3).

The vulval position of P. christiei is 53 to 58% of the body length from the anterior (4,10). The vulval position of H. galeatus is 52 to 60% from the anterior (9). Helicotylenchus pseudorobustus and H. dihystera have vulval positions of 59 to 64%, and 60 to 65%, respectively (11). Therefore, the vulval position of P. christiei is anterior to that of the Helicotylenchus spp. commonly found on turf, but not different from that of H. galeatus. Death position can be very useful for distinguishing P. christiei from common Hoplolaimus spp. and Helicotylenchus spp. on turf. In death, the body position of P. christiei is usually a loose spiral or C shape (Fig. 4A). The head seldom overlaps the tail to form a complete spiral. In contrast, the death position of H. pseudorobustus and H. dihystera is usually a tight spiral, with the head generally overlapping the tail (Fig. 4B). The death position of Hoplolaimus spp. is more or less straight or slightly curved (Fig. 4C). Fig. 4A. In death the body of female Peltamigratus christiei (a) is curved, but usually does not form a full spiral. Males (b) are often not curved when dead. Fig. 4B. In death the bodies of the Helicotylenchus spp. common on turf usually form a full spiral with the head overlapping the tail at least once. Fig. 4C. In death the body of Hoplolaimus spp. is usually straight or slightly curved. Tail shape is also useful in distinguishing P. christiei from Hoplolaimus spp. and Helicotylenchus spp. on turf. The female tail of P. christiei is rounded and may be slightly asymmetrical (Fig. 5A). The female tail of H. galeatus is short and symmetrical (Fig. 5B). The female tails of H. pseudorobustus and H. dihystera are distinctly asymmetrical, being curved ventrally and often having a short terminal projection (Fig. 5C).

Fig. 5A. The female tail of Peltamigratus christiei is slightly asymmetrical and curved ventrally. Fig. 5B. The female tail of Hoplolaimus spp. is symmetrical and bluntly rounded. Fig. 5C. The female tail of the Helicotylenchus spp. common on turf is asymmetrical and curved ventrally, and often a terminal projection is present. The most useful diagnostic tool for separating P. christiei from Hoplolaimus spp. and Helicotylenchus spp. on turf is the presence of epiptygmata. Epiptygmata are sclerotized projections surrounding the vulva of certain species of nematodes (Fig. 6). Peltamigratus christiei has two prominent epiptygmata that are easily observed with most microscopes (Fig. 7A). Some other species of Peltamigratus have only a single epiptygma. Epiptygmata are not present in Hoplolaimus spp. (Fig. 7B) or Helicotylenchus spp. (Fig. 7C).

Fig. 6. Scanning electron micrograph of epiptygmata, sclerotized vulval projections, on a female Peltamigratus christiei. Peltamigratus christiei has two epiptygmata, some other species of Peltamigratus have only a single epiptygma (Photo courtesy of K. B. Nguyen). Fig. 7A. Epiptygmata are easily seen surrounding the vulva of Peltamigratus christiei. Fig. 7B. The vulva of Hoplolaimus spp. lacks epiptygmata. Fig. 7C. The vulva of Helicotylenchus spp. lacks epiptygmata. The intent of this paper is to help identify P. christiei from common nematodes found in turfgrass samples in the southern United States. On occasion, other nematodes also may be confused with P. christiei. Scutellonema spp. and Aorolaimus spp. very much resemble P. christiei, and females may be indistinguishable using low resolution microscopy. While there are no published reports of Scutellonema spp. parasitizing warm-season turfgrasses, they are occasionally found in turf samples submitted to the University of Florida Nematode Assay Laboratory. Since males are abundant in populations of P. christiei, the shape of the bursa (caudal alae) is a useful feature to separate it from species of Scutellonema. The bursa of P. christiei extends beyond the tail

tip when seen in lateral view (Fig. 8A). In many Scutellonema spp. males are rare. When Scutellonema males are present, the bursa does not extend beyond the tail tip when seen in lateral view (Fig. 8B). If observation at high magnification using oil immersion is possible, scutella (large phasmid) location is the primary feature used to separate the genera Peltamigratus, Scutellonema, and Aorolaimus. The scutella of Scutellonema are located near the anus and are nearly opposite each other on the nematode body. In Peltamigratus and Aorolaimus the scutella are anterior to the anus and not opposite each other. Aorolaimus has one scutella anterior and the other posterior to the vulva. Peltamigratus has both scutella posterior to the vulva. See Sher (9,10,11) for a detailed description of each genus. Fig. 8A. The bursa of P. christiei extends beyond the tail tip in lateral view. Fig. 8B. The bursa of Scutellonema spp. does not extend beyond tail tip in lateral view. A general key to genera of plant-parasitic can be very helpful in diagnosing plant-parasitic nematodes. Mai et al. (6) has both pictorial and non-pictorial keys and is an excellent resource for nematode diagnostic laboratories. Keys specific to the Hoplolaiminae, the suborder containing all the genera dealt with in this paper (Aorolaimus, Helicotylenchus, Hoplolaimus, Peltamigratus, and Scutellonema), are found in Siddiqi (12). The most current key to species in the genera Peltamigratus and Aorolaimus is Baujard et al. (1). Literature Cited 1. Baujard, P., Castillo, P., Doucet, M., Martiny, B., and Mountport, D. 1994. Taxonomic studies on the genus Aorolaimus Sher, 1963 (Nemata: Hoplolaimidae). 1. Bibliographic analysis and tentative key to species. Fundam. Appl. Nematol. 17:103-115. 2. Fortuner, R. 1987. A reappraisal of Tylenchina (Nemata). 8. The Family Hoplolaimidae Filip'ev, 1934. Rev. Nematol. 10:219-232. 3. Friere F. C. O., and Montiero, A. R. 1978. Nematodes of Amazonia. II. Parasitic and free-living nematodes associated with black pepper (Piper nigrum L.) and cocoa (Theobroma cacao). Acta Amazonica 8:561-564. 4. Golden, M. A., and Taylor, A. L. 1956. Rotylenchus christiei, n. sp., a new spiral nematode species associated with roots of turf. Proc. Helminthol. Soc. Wash. 23:109-112. 5. Lucas, L. T., Blake, C. T., and Barker, K. R. 1974. Nematodes associated with bentgrass and bermudagrass golf greens in North Carolina. Plant Dis. Rep. 58:822-824. 6. Mai, W. F., and Mullin, P. G. 1996. Plant-Parasitic Nematodes: A Pictorial Key to Genera. Cornell University Press. Ithaca, NY. 7. McSorley, R. 1987. Extraction of nematodes and sampling methods. Pages 13-47 in: R. H. Brown and B. R. Kerry, eds. Principles and Practice of Nematode Control in Crops. Academic Press Australia, Marrickville, Australia. 8. Murdoch, C. L., Tashiro, H., and Harrison, M. B. 1978. Plant-parasitic nematodes associated with golf putting-green turf in New York. Plant Dis. Rep. 62:85-87. 9. Sher, S. A. 1963. Revision of the Hoplolaiminae (Nematoda). II. Hoplolaimus Daday, 1905 and Aorolaimus n. gen. Nematologica 9:267-295 9:455-467. 10. Sher, S. A. 1963. Revision of the Hoplolaiminae (Nematoda). IV. Peltamigratus n. gen. Nematologica 9:455-467 9:267-295.

11. Sher, S. A. 1966. Revision of the Hoplolaiminae (Nematoda). II. Helicotylenchus (Steiner, 1945). Nematologica 12:1-56. 12. Siddiqi, M. R. 2000. Tylenchida: Parasites of plants and insects. CABI Publishing, New York, NY. 13. Sikora, E. J., Geurtal, E. A., and Bowen, K. L. 2001. Plant-parasitic nematodes associated with hybrid bermudagrass and creeping bentgrass putting greens in Alabama. Nematropica 31(2):301-305. 14. Smiley, R. W., Dernoeden, P. H., and Clarke, B. B. 1992. Compendium of Turfgrass Diseases. 2nd ed., The American Phytopathological Society, St. Paul, MN. 15. Todd, T. C., and Tisserat, N. A. 1990. Occurrence, spatial distribution, and pathogenicity of some phytoparasitic nematodes on creeping bentgrass putting greens in Kansas. Plant Dis. 74:660-663. 16. Walker, N. R., Goad, C., Zhang, H., and Martin, D. L. 2002. Factors associated with populations of plant parasitic nematodes in bentgrass putting greens. Plant Dis. 86:764-768.