Citation 数理解析研究所講究録 (1996), 966:

Similar documents
Citation 数理解析研究所講究録 (2000), 1123:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Citation 数理解析研究所講究録 (2009), 1665:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Citation 数理解析研究所講究録 (1996), 941:

Citation 数理解析研究所講究録 (2016), 1995:

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Citation 数理解析研究所講究録 (2013), 1841:

Citation 数理解析研究所講究録 (2012), 1805:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Citation 数理解析研究所講究録 (2004), 1396:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

Hopf-Lax formulas for Hamilton-Jaco. Citation 数理解析研究所講究録 (1999), 1111:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (1994), 886:

COMPARISON PRINCIPLES FOR CONSTRAINED SUBHARMONICS PH.D. COURSE - SPRING 2019 UNIVERSITÀ DI MILANO

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

Citation 数理解析研究所講究録 (2010), 1716:

Citation 数理解析研究所講究録 (1999), 1099:

THE TWO-PHASE MEMBRANE PROBLEM REGULARITY OF THE FREE BOUNDARIES IN HIGHER DIMENSIONS. 1. Introduction

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

A finite element level set method for anisotropic mean curvature flow with space dependent weight

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425:

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX

Citation 数理解析研究所講究録 (2005), 1440:

Citation 数理解析研究所講究録 (2015), 1963:

THE HARNACK INEQUALITY FOR -HARMONIC FUNCTIONS. Peter Lindqvist and Juan J. Manfredi

np n p n, where P (E) denotes the

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

Recent developments in elliptic partial differential equations of Monge Ampère type

Citation 数理解析研究所講究録 (2008), 1588:

Citation 数理解析研究所講究録 (2002), 1244:

Citation 数理解析研究所講究録 (2004), 1368:

LIST OF PUBLICATIONS. Mu-Tao Wang. March 2017

ON THE DEFINITION AND PROPERTIES OF. Citation 数理解析研究所講究録 (2007), 1553:

Citation 数理解析研究所講究録 (2003), 1334:

(\displaystyle \frac{n-2}{2})^{2}\int_{ $\Omega$}\frac{ f ^{2}}{ x ^{2}}dx\leq\int_{ $\Omega$} \nabla f ^{2}dx

Citation 数理解析研究所講究録 (2001), 1191:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Wave and Dispersive Equations) Citation 数理解析研究所講究録 (2004), 1355:

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Citation 数理解析研究所講究録 (2007), 1570:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B33:

ISOPERIMETRIC INEQUALITY FOR FLAT SURFACES

Title Numerics(The 7th Workshop on Stocha. Citation 数理解析研究所講究録 (2006), 1462:

1 Discrete Morse semfflows

Regularity of the optimal set for spectral problems and the vectorial Bernoulli problem

Homogenization and error estimates of free boundary velocities in periodic media

On Global Minimizers for a Variational Problem with non-local effect related to micro-phase separation

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

Frequency functions, monotonicity formulas, and the thin obstacle problem

Citation 数理解析研究所講究録 (2008), 1605:

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

arxiv: v4 [math.dg] 18 Jun 2015

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

TitleOccam Algorithms for Learning from. Citation 数理解析研究所講究録 (1990), 731:

arxiv: v1 [math.ap] 18 Jan 2019

arxiv: v1 [math.fa] 26 Jan 2017

Citation 数理解析研究所講究録 (2003), 1347:

Citation 数理解析研究所講究録 (1994), 863:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

Science and Their Applications) Citation 数理解析研究所講究録 (2008), 1614:

ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION

Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2006), 1466:

ON MAPS WHOSE DISTRIBUTIONAL JACOBIAN IS A MEASURE

Note on the Chen-Lin Result with the Li-Zhang Method

Citation 数理解析研究所講究録 (2006), 1465:

Differential Equations and its Deve. Citation 数理解析研究所講究録 (2005), 1428:

Tobias Holck Colding: Publications. 1. T.H. Colding and W.P. Minicozzi II, Dynamics of closed singularities, preprint.

AFFINE MAXIMAL HYPERSURFACES. Xu-Jia Wang. Centre for Mathematics and Its Applications The Australian National University

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space

A Numerical Scheme for Quantum Hydr Title. Citation 数理解析研究所講究録 (2006), 1495:

Citation 数理解析研究所講究録 (1994), 860:

Estimates in surfaces with positive constant Gauss curvature

Regularization on Discrete Spaces

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

Transcription:

Title Partial regularity for electrochemi current(nonlinear Evolution Equatio Author(s) WEISS, GEORG SEBASTIAN Citation 数理解析研究所講究録 (1996), 966: 81-87 Issue Date 1996-09 URL http://hdl.handle.net/2433/60606 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

966 1996 81-87 81 Partial regularity for electrochemical machining with threshold current GEORG SEBASTIAN $\mathrm{w}_{\mathrm{e}\mathrm{l}\mathrm{s}}\mathrm{s}$ The purpose of electrochemical machining is to shape a workpiece which plays the role of the anode by placing it into an electrolytic solution and applying a voltage drop between it and the tool, the cathode. During the process material is removed electrolytically at the surface of the workpiece while the tool remains unaltered. Speaking mathematically this means that an electric $\infty[\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{s}$ potential $u:$] $0,$ $T[\cross\Omegaarrow[0,$ different values, say the values $0$ on the anode $A$ and the value 1 on the cathode $C$ (which can be considered as a set in $\mathrm{r}^{n}-\omega$ ), $u$ is harmonic in between, and the normal speed $V$ of the moving boundary of the anode equals the dissolution rate, which is assumed to be a function of the electric current flowing in normal direction through the anode surface (see [LS], [Sch]): $\Delta u=0$ in $\{u>0\}\cap(]0, T[\cross\Omega)$, $V=f(-\nabla u\cdot\nu)$ on $\partial\{u>0\}\cap(]0, T[\cross\Omega)$, $u=1\mathrm{o}\mathrm{n}]0,$ $T[\cross(c\cap\partial\Omega)$, $u=0\mathrm{o}\mathrm{n}]0,$ $T[\cross(A\cap\partial\Omega)$ and $\nabla u\cdot\nu=0\mathrm{o}\mathrm{n}]0,$ $T[\cross(\partial\Omega-C-A)$. Here $\nu$ means $\mathrm{r}arrow[0,$ $\infty$ [ value $Q$ the outer normal on $\partial\{u>0\}$ and $\partial\omega$ respectively, and $fi$ is a non-decreasing function vanishing up to some threshold and being positive for values $>Q$. The corresponding steady state

82 problem is $\Delta u=0$ in $\{u>0\}\cap\omega$, $-\nabla u\cdot\nu\leq Q$ on, $\partial\{u>0\}\cap\omega$ $u=1$ on, $C\cap\partial\Omega$ $u=0$ on $A\cap\partial\Omega$ $\nabla u\cdot\nu=0$ on $\partial\omega-a-^{c}$. However, since this problem is highly non-unique, and since it is known that for certain initial data the solution of the evolutionary problem converges to a solution satisfying the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}-\nabla u\cdot\nu=q$ on and $\partial\{u>0\}\cap\omega$, we pass to the critical steady state problem, where the condition on the free boundary $\partial\{u>0\}$ is replaced by the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}-\nabla u\cdot\nu=q$. Existence of variational solutions for this problem has been shown by Alt and Caffarelli in [AC]: they consider the minimum problem $E(v):= \int( \nabla v ^{2}\Omega+Q^{2}x_{\{v>0}\})arrow\min_{K}$, where $Q\in C^{0,\gamma}(\Omega)$ is positive and $IC$ is a closed affine subspace of $H^{1,2}(\Omega)$ which prescribes suitable boundary data on $\partial\omega$ (the Dirichlet data should be non-negative in order to obtain non-negative solutions). Since the functional $E(v)$ is but lower semicontinuous, only those sequences $u_{\epsilon}arrow u$ with respect to whom is continuous can serve to characterize a local minimum. $E$ Therefore the following definition makes sense: Definition 1 $u\in I\mathrm{f}$ is called a local minimum von, $E$ if there is an such that $\epsilon_{0}>0$ $E(u)\leq E(v)$ for all $v\in K$ which satisfy $ u-v H^{1},2(\Omega) + x\{u>0\}-x_{\{\}}v>0 L1(\Omega)\leq\epsilon_{0}$ Existence and regularity of local minima have been proved in [AC]: if $u$ is a local minimum of $E$ then $u\in C_{loC}^{0,1}(\Omega)$ and $u\geq 0$ and thereby $u$ divides $\Omega$ into the open set $\{u>0\}$, where $u$ is harmonic, and the set $\{u=0\}$.

83 If the free boundary $\partial\{u>0\}$ is smooth, then the first variation of the minimum problem yields a strong solution of the critical steady state electrochemical machining problem, however regularity of the free boundary in dimensions $n>2$ is still open. The same problem appears also in the approach of [HS], where a solution is constructed which satisfies the free boundary condition pointwisely: since they do not prove any regularity of the free boundary, it is not clear whether their solution is in $C^{1}(\overline{\{u>0\}})$, i.e. a strong solution. What Alt and Caffarelli did show is the following $\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}^{-\mathrm{i}\mathrm{m}\mathrm{p}}1\mathrm{i}\mathrm{e}\mathrm{s}$ regularityresult for variational solutions: flatness of in $\partial\{u>0\}$ a point $x_{0}$ implies regularity of in $\partial\{u>0\}$ $x_{0}([\mathrm{a}\mathrm{c}])$ a neighborhood of. This corresponds to an analogous result of $\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{g}\mathrm{i}$ of proof are different. for minimal surfaces, however the methods In the following we are going to derive a partial regularity result for $\partial\{u>0\}$ by methods which again have their counterparts in the regularity theory of minimal surfaces. $\mathrm{m}$ The most important one is a new.onotonicity formula for local minima of $E$ which corresponds to a monotonicity formula of Miranda $([\mathrm{m}\mathrm{i}])$ surfaces: Theorem 2 (Monotonicity formula) for mimimal Let $u$ be a local minimum of $E$. Then for every $D\subset\subset\Omega$ there exists $\delta>0$ depending on $(n, u H^{1,\infty}(D) \epsilon_{0}$, dist $(D, \partial\omega))$ such that for any satisfying $u(x_{0})=0$ the function $\rho\mapsto p(\rho)$ $B_{\delta}(x_{0})\subset D$ $:= \frac{1}{\rho^{n}}\int_{b_{\rho(x)}0}( \nabla u ^{2}+Q2(x\mathrm{o})\chi\{u>0\})-\frac{1}{\rho}\int_{0}^{\rho}\frac{1}{r^{n-1}}\partial B_{r}(x\int_{0)}(\nabla u\cdot\nu)^{2}d\mathcal{h}^{n-}1dr$ is well-defined and for any $0<s<\rho<\delta$ the inequality $0 \leq\int_{\iota}^{\rho}t^{-3}\int_{1}\partial B(x\mathrm{o})[t\int_{0}(\nabla u(r\xi \mathrm{f})\cdot\xi)^{2}dr-(\int_{0}^{t}\nabla u(r\xi)\cdot\xi dr)^{2}]d\mathcal{h}^{n-1}(\xi)dt$

(see 84 $\leq p(\rho)-p(s)+\frac{2n}{\gamma}\rho^{\gamma}[q^{2}]_{\gamma,d}$ holds; here $[Q^{2}]_{\gamma,D}:= \sup_{x\neq y\in D}\frac{ Q^{2}(x)-Q2(y) }{ x-y ^{\gamma}}$. If is constant then $Q$ $p$ is a non-decreasing function in the interval. $(0, \delta)$ For proof see [We, Theorem 1.2]. Notice that the proof of Theorem 2 holds for $Q=0$ and yields in this case a monotonicity formula for harmonic functions which is not standard. Furthermore observe that by analogy to the monotonicity formula used in the field of harmonic mappings and liquid crystals $([\mathrm{s}\mathrm{u}],[\mathrm{h}\mathrm{k}\mathrm{l}])$ we could prove that is (for constant ) non-decreasing in, $r^{2-n} \int_{b_{\gamma}}(x\mathrm{o})( \nabla u ^{2}+Q^{2}\chi_{\{u>0\}})$ $Q$ $r$ however the scaling of this monotonicity does not accord with the regularity of $u$ and therefore this monotonicity does not give any new information when passing to blow-up limits. $u_{k}(x):= \frac{u(x_{0}+\rho_{k}x)}{\rho_{k}}$ When considering blow-up sequences for $x_{0}\in\partial\{u>$ $0\}$ and as $\rho_{k}arrow 0$ $karrow\infty$ $([\mathrm{a}\mathrm{c}])$, it is known that a subsequence of $u_{k}$ converges in some sense to a blow-up limit $u_{0}$ and that any blow-up limit $u_{0}$ is an absolute minimum of $\int_{b_{r}}( \nabla v ^{2}+Q^{2}(x_{0})\chi\{v>0\})$ in the affine space $\{v\in H^{1,2}(B_{R}) : v-u_{0}\in H_{0}^{1,2}(B_{R})\}$, and the monotonicity formula of Theorem 2 leads to the fact that any blow-up limit $u_{0}$ is homogeneous of $\mathit{0}$ degree 1, that is the graph $u_{0}$ of is a cone with vertex at [We, Chapter 2]). Another interesting property is the non-positive mean curvature of $\partial\{u_{0}>$ $0\}$ : Proposition 3 Let $D$ $\mathrm{r}^{n}$ be an open and bounded set in satisfying $\overline{d}\cap(\partial\{u_{0}>0\}$ - $\partial_{red}\{u_{0}>0\})=\emptyset$. Then $P(\{u_{0}>0\})D)\leq P(F, D)$ for any $F\subset\{u_{0}>0\}$ such that $\partial F\cap D$ is a $C^{2}$ -surface and. means the perimeter and $\partial_{red}$ $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\chi_{f}-x_{\{u0}>0\})\subset D$ Here $P$ means the reduced boundary, i.e. the part of the boundary where the exterior normal of [Fe, 4.5.5] has norm 1.

85 For proof see [We, Theorem 2.1]. Using the above results in a dimension reduction procedure one obtains the following partial regularity (compare to [We, Chapter 3 and 4]): Theorem 4 There is a dimension $k^{\star}\in \mathrm{n}\cup\{\infty\}$ such that for any $\Omega,$ $Q$ and $K$ as stated above and for any local minimum $u$ : $\Omega\subset \mathrm{r}^{n}arrow \mathrm{r}$ of $E$ we have the following: i) if $n<k^{\star}$ then the free boundary $\partial\{u>0\}$ is locally in $\Omega$ a $C^{1,\alpha}$-surface. ii) if $n=k^{\star}$, at most of in $\Omega$ then the singular set $\Sigma:=(\partial\{u>0\}-\partial_{red}\{u>0\})\cap\Omega$ consists open set $\Omega-\Sigma$. isolated points and the free boundary is a $C^{1,\alpha}$ -surface in the iii) $\mathcal{h}^{s}(\sigma)=0$ for any $s>n-k^{\star}$ Corollary 5 Since, it follows that $k^{\star}\geq 3$ $\mathcal{h}^{n-2}(\sigma)=0$ and that in dimension $n=3$ the $\Sigma$ $\Omega$ singular set consists at most of in isolated points. The estimate of $k^{\star}$ from below, i.e. the fact that singularities cannot occur in two dimensions, was already shown in [AC] by sophisticated methods, in our context however the estimate follows from the simple geometric argument, that a function which is harmonic and homogeneous of degree 1 domain of $\mathrm{r}^{2}$ must be linear in this domain. in some In case of three dimensions which is the realistic situation with respect to the electrochemical machining problem above, more can be shown with respect to the structure of the isolated singularities: the fact that any blow-up limit $u_{0}$ is homogeneous of degree 1 implies that the curvature of the free boundary in radial direction vanishes. Therefore we infer from the non-positive mean curvature of and from the smoothness $\partial\{u_{0}>0\}$ of in $\partial\{u_{0}>0\}$ $\mathrm{r}^{\mathrm{n}}-\{0\}$ that $\{u_{0}=0\}$ has to be a finite union of convex sets. A special consequence is that any connected component of $\{u_{0}=0\}$ is Lipschitz continuous.

86 Georg S. Weiss Institut f\"ur Angewandte Mathematik Wegelerstr. 6 53115 Bonn Germany References: [AC] H.W. Alt, L.A. Caffarelli: Existence and regularity for a minimum problem wzth free boundary. Journal f. d. reine und angewandte Math. 325, 1981 [Fe] H. Federer: Geometrzc Measure Theory. Springer, Berlin-Heidelberg-New York-Tokyo, 1969 [HKL] R. Hardt, D. Kinderlehrer, F.-H. Lin: Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105, 1986 [HS] A. Henrot, D. Seck: Retour a une ancienne approche pour un probleme a frontiere libre classique. Preprint [LS] A. A. Lacey, M. Schillor: Electrochemical and Electro-Discharge Machining. with a Threshold Current IMA J. of Appl. Math. 39, 1987 [Mi] M. Miranda: $Sul$ minimo dell integrale $del$ gradiente $diuna$ funzione. Ann. Sc. Norm. Sup. Pisa (3) 19, 1965 [Sch] M. Schillor: Electrochemical Machining with a Threshold Current. Free Boundary Problems: Theory and Applications Vol. II Pitman Research notes, 1987

87 [SU] R. Schoen, K. Uhlenbeck: A regularity theory for harmonic maps. J. Differ. Geom. 17, 1982 [We] G. Weiss: Partial regularity for a minimum problem with free boundary. SFB 256, Bonn, Preprint Nr. 364, to appear in Journal Geom. Anal.