Physics-based compact model for ultimate FinFETs

Similar documents
MIXDES 2001 Zakopane, POLAND June 2001

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Chapter 5 MOSFET Theory for Submicron Technology

THE performance of traditional single-gate MOSFETs

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

A Multi-Gate CMOS Compact Model BSIMMG

EKV MOS Transistor Modelling & RF Application

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

ECE-305: Fall 2017 MOS Capacitors and Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture #27. The Short Channel Effect (SCE)

ECE-305: Spring 2016 MOSFET IV

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Components Research, TMG Intel Corporation *QinetiQ. Contact:

MOS Transistor Properties Review

ECE 305: Fall MOSFET Energy Bands

Characteristics Optimization of Sub-10 nm Double Gate Transistors

SOI/SOTB Compact Models

VHDL-AMS Design of a MOST Model Including Deep Submicron and Thermal-Electronic Effects

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

MOS Transistor Theory

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

The PSP compact MOSFET model An update

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin

Equivalent Correlation between Short Channel DG & GAA MOSFETs

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOSFET Capacitance Model

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Ultimately Scaled CMOS: DG FinFETs?

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

Ultra-Scaled InAs HEMTs

Advanced Compact Models for MOSFETs

Performance Analysis of Ultra-Scaled InAs HEMTs

A Verilog-A Compact Model for Negative Capacitance FET

STATISTICAL MODELLING OF f t TO PROCESS PARAMETERS IN 30 NM GATE LENGTH FINFETS B. Lakshmi and R. Srinivasan

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

Compact Modeling of Ultra Deep Submicron CMOS Devices

RECENTLY, A junctionless (JL) double-gate (DG) fieldeffect

Integrated Circuits & Systems

Simple and accurate modeling of the 3D structural variations in FinFETs

Compact Modelling Techniques in Thin Film SOI MOSFETs

This is the author s final accepted version.

Lecture 5: CMOS Transistor Theory

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Analytical modelling and performance analysis of Double-Gate MOSFET-based circuit including ballistic/quasi-ballistic effects

Long Channel MOS Transistors

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing

Part 5: Quantum Effects in MOS Devices

EECS130 Integrated Circuit Devices

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Nanoscale CMOS Design Issues

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Lecture 11: MOSFET Modeling

ECE 546 Lecture 10 MOS Transistors

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

MOS Transistor I-V Characteristics and Parasitics

Influence of structural and doping parameter variations on Si and Si 1 x Ge x double gate tunnel FETs: An analysis for RF performance enhancement

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Lecture 18 Field-Effect Transistors 3

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

EE5311- Digital IC Design

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

ECE 342 Electronic Circuits. 3. MOS Transistors

MOS CAPACITOR AND MOSFET

N Channel MOSFET level 3

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

The Devices: MOS Transistors

CMOS Digital Integrated Circuits Analysis and Design

CORE COMPACT MODELS FOR SYMMETRIC MULTI-GATE FERROELECTRIC FIELD EFFECT TRANSISTORS

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

MOSFET: Introduction

New Tools for the Direct Characterisation of FinFETS

The HV-EKV MOSFET Model

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

A 3-D Parasitic Extraction Flow for the Modeling and Timing Analysis of FinFET Structures

Performance Analysis of 60-nm Gate-Length III-V InGaAs HEMTs: Simulations Versus Experiments

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

EE410 vs. Advanced CMOS Structures

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Transcription:

Physics-based compact model for ultimate FinFETs Ashkhen YESAYAN, Nicolas CHEVILLON, Fabien PREGALDINY, Morgan MADEC, Christophe LALLEMENT, Jean-Michel SALLESE nicolas.chevillon@iness.c-strasbourg.fr

Research team and collaboration Professor - Christophe LALLEMENT Associate professor - Fabien PREGALDINY Compact modeling of advanced devices Associate professor - Morgan MADEC Post-doc Ashkhen YESAYAN - left in Dec. 2010 PhD student - Nicolas CHEVILLON Collaboration Dr. Jean-Michel SALLESE LEG, EPFL N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 2

Outline 1 Introduction 2 Short-channel effects modeling 3 Mobility modeling 4 Quantum mechanical effect modeling 5 6 Transcapacitance modeling Doped DG MOSFET modeling N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 3

FinFET transistor L: channel length W Si : silicon width H Si : silicon height t ox : oxide thickness One of the best candidate to extend the CMOS technology. Needs of designers for advanced circuit simulation: (COMON European project) a physics-based FinFET compact model a parameter extraction methodology N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 4

Physics-based FinFET compact model Physics-based long-channel DG MOSFET model [1] Extension of the undoped model to high doping [2] Model accounts for small-geometry effects [3]: Short-channel effects (SCE), drain-induced barrier lowering (DIBL) Subthreshold swing degradation Drain saturation voltage and channel length modulation (CLM) Mobility degradation Quantum mechanical effects (QME) Transcapacitance modeling for small-geometry [3] [1] J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism, Solid-State Electronics, vol. 49, no. 3, pp.485-489, Mar 2005. [2] J.-M. Sallese, N. Chevillon, F. Prégaldiny, C. Lallement and B. Iñiguez, The equivalent-thickness concept for doped symmetric DG MOSFETs, IEEE Transactions on Electron Devices, vol. 57, no. 11, pp.2917-2924, Nov 2010. [3] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 5

Range of validity Gate length (L) : down to 25 nm Silicon width (W Si ) : down to 3 nm Silicon height (H Si ): down to 50 nm Gate oxide thickness (t ox ) : 1.5 nm Top oxide thickness (t top ) : 50nm Channel doping (N ch ) : intrinsic to 10 17 cm -3 and high doping* Source/Drain doping (N sd ) : 5 10 21 cm -3 *: only for long channel devices N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 6

Long channel drain current model [1] Normalized charge-potentials relationship: [2] Normalized drain current: [1] J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism, Solid-State Elec., vol. 49, no. 3, pp.485-489, Mar 2005. [2] F. Prégaldiny, F. Krummenacher, B. Diagne, F. Pêcheux, J.-M. Sallese and C. Lallement, Explicit modelling of the double-gate MOSFET with VHDL-AMS Int. J. Numer. Model., vol. 19, pp. 239-256, Mar 2006. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 7

Study of the minimum surface potential Cross-section of FinFET Study in: - classic physics - weak inversion N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 8

Current model for ultra-short channels [1] (1/2) Correction of the gate voltage: Drain current model: [1] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 9

Current model for ultra-short channels (2/2) Potential Expression in the channel in the subthreshold region [1]: valid for L > 1.5 W Si In weak inversion: General scaling length in the long-channel case, in the short-channel case, In strong inversion, analytical expression is negligeable w.r.t, No need of smoothing function between weak and strong inversion. [1] X. Liang, and Y. Taur, A 2-D Analytical solution for SCEs in DG MOSFETs, IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1385-1391, August 2004. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 10

Mobility model [1] Total mobility model and channel length modulation model taken from [2] Transversal mobility: Term of mobility degradation for the short channels in weak inversion Terms of mobility degradation in strong inversion : long-channel low field mobility : transversal electric field in weak inversion : transversal electric field in high inversion : normalizing factor : parameters to be extracted [1] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. [2] F. Lime, B. Iñiguez and O. Moldovan, A quasi-two dimentional compact drain-current model for undoped symmetric double-gate MOSFETs including short-channel effects, IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1441-1448, June 2008. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 11

Quantum mechanical effects [1] (1/3) Principle of the quantum mechanical effects modeling Quantum shift of the first energy level: W Si W Si E 1 E 1 E 0 E 0 E C Structural confinement E C Electrical confinement [1] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 12

Quantum mechanical effects (2/3) Modeling of the quantum shift as a correction to surface potential: Inclusion of the term of structural confinement in the charge-potential relationship Inclusion of the term of electrical confinement in the charge-potential relationship : elementary electronic charge : thermal voltage : effective mass of electrons in the channel length direction N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 13

Quantum mechanical effects (3/3) New charge-potentials relationship: Normalized drain current expression: Addition of a term in the drain current expression by taking into account the QMEs N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 14

Results of the static model Id(Vg) current curves Id(Vd) current curves Symbols: Quantum 3D simulations with CVT mobility model Lines: Compact model N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 15

Transcapacitance modeling [1] Transcapacitance definitions: Normalized total charge calculation according to the channel charge partition proposed by Ward Charge-based expressions for the transcapacitances [1] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 16

Transcapacitance modeling [1] Modeling of the structural confinement by the calculation of the charge density. in Modeling of the electrical confinement by to a taylor series, approximated according within a new definition of the gate oxide capacitance [1] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 17

Results of the dynamic model Cgg(Vg) of long channel Cgg(Vg) of short channel Symbols: Quantum 3D simulations with constant mobility Lines: Compact model N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 18

Doped DG MOSFET model [1] The equivalent-thickness concept Energy diagram Including the doping N a in the Poisson s equation, we obtain a similar model than the one for the undoped DG MOSFET [2]. [1] J.-M. Sallese, N. Chevillon, F. Prégaldiny, C. Lallement and B. Iñiguez, The equivalent-thickness concept for doped symmetric DG MOSFETs, IEEE Transactions on Electron Devices, vol. 57, no. 11, pp.2917-2924, Nov 2010. [2] J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism, Solid-State Electronics, vol. 49, no. 3, pp.485-489, Mar 2005. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 19

Doped DG MOSFET model [1] The equivalent-thickness concept Charge-potentials relationship [1] J.-M. Sallese, N. Chevillon, F. Prégaldiny, C. Lallement and B. Iñiguez, The equivalent-thickness concept for doped symmetric DG MOSFETs, IEEE Transactions on Electron Devices, vol. 57, no. 11, pp.2917-2924, Nov 2010. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 20

Doped DG MOSFET results Exact analytical relationship between the equivalent thickness and the doping Equivalent thickness Mobile charge density T si = 40 nm 20 nm 10 nm N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 21

Doped DG MOSFET results Normalized drain current Drain current versus gate voltage N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 22

Electrical parameter number of the model Effect Previous model [1,2] Present model [3] Roll-off (SCE), DIBL Subthreshold Slope (SS) Channel Length Modulation (CLM) 18 0 1 1 Mobility - 2 Quantification (QME) 9 0 Overlap capacitance - 1 All 28 4 [1] M. Tang, F. Prégaldiny, C. Lallement, J.-M. Sallese, Explicit compact model for ultranarrow body FinFETs IEEE Trans. Electron Devices, vol. 56, no. 7, pp.1543-1547, Jul 2009. [2] N. Chevillon, M. Tang, F. Prégaldiny, C. Lallement et M. Madec, FinFET compact modeling and parameter extraction, 16th IEEE MIXDES., pp.55-60, Juin 2009. [3] A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 23

Conclusion Included effects SCE & DIBL Sub-threshold Slope degradation Drain saturation voltage Channel length modulation (CLM) Mobility degradation Quantum mechanical effects Extrinsic capacitances Validity range Perspectives I D (V GS ) & I D (V DS ), small-signal parameters (g m, g ds, ) L 25nm W Si 3 nm H Si = 50nm t ox = 1.5nm Physic-based modeling of the temperature dependence 3D modeling: consideration of the triple-gate FinFET Extension of the doped model to short-channel devices Parameter extraction methodology associated with an automated extraction procedure N. CHEVILLON nicolas.chevillon@iness.c-strasbourg.fr 24

Major publications: J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, A design oriented chargebased current model for symmetric DG MOSFET and its correlation with the EKV formalism, Solid-State Electronics, vol. 49, no. 3, pp.485-489, Mar 2005. A. Yesayan, F. Prégaldiny, N. Chevillon, C. Lallement and J.-M. Sallese, Physics-based compact model for ultra-scaled FinFETs, Solid-State Electronics, Article in Press, April 2011. J.-M. Sallese, N. Chevillon, F. Prégaldiny, C. Lallement and B. Iñiguez, The equivalent-thickness concept for doped symmetric DG MOSFETs, IEEE Transactions on Electron Devices, vol. 57, no. 11, pp.2917-2924, Nov 2010.