Properties of Hexagonal Tile local and XYZ-local Series

Similar documents
1 Introduction to Modulo 7 Arithmetic

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Constructive Geometric Constraint Solving

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Trees as operads. Lecture A formalism of trees

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

0.1. Exercise 1: the distances between four points in a graph

Outline. Binary Tree

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

Planar Upward Drawings

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

CS September 2018

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Garnir Polynomial and their Properties

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

QUESTIONS BEGIN HERE!

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

arxiv: v1 [cs.ds] 20 Feb 2008

Designing A Concrete Arch Bridge

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

EE1000 Project 4 Digital Volt Meter

Last time: introduced our first computational model the DFA.

Numbering Boundary Nodes

Analysis for Balloon Modeling Structure based on Graph Theory

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CS 461, Lecture 17. Today s Outline. Example Run

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

Orthogonal and Biorthogonal FIR Hexagonal Filter Banks with Sixfold Symmetry

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

arxiv: v1 [math.mg] 5 Oct 2015

Journal of Solid Mechanics and Materials Engineering

12. Traffic engineering

Construction 11: Book I, Proposition 42

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

1 Ovrviw In this ppr w onsir two istint, ut intrtwin, thms. Th rst is nighorhoo xpnsion grmmrs whih onstitut onsirl hng rom mor tritionl phrs strutur

Research Article On the Genus of the Zero-Divisor Graph of Z n

Solutions to Homework 5

QUESTIONS BEGIN HERE!

Steinberg s Conjecture is false

TOPIC 5: INTEGRATION

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CS 241 Analysis of Algorithms

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

Handwritten Japanese Address Recognition Technique Based on Improved Phased Search of Candidate Rectangle Lattice

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

Flat Splicing Array Grammar Systems Generating Picture Arrays

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Instructions for Section 1

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Walk Like a Mathematician Learning Task:

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

New challenges on Independent Gate FinFET Transistor Network Generation

Discovering Pairwise Compatibility Graphs

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

DFA (Deterministic Finite Automata) q a

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

An Efficient FPGA Implementation of the Advanced Encryption Standard Algorithm G. Mohan 1 K. Rambabu 2

Limits Indeterminate Forms and L Hospital s Rule

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Formal Concept Analysis

Uniform 2D-Monotone Minimum Spanning Graphs

Problem solving by search

This chapter covers special properties of planar graphs.

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Monotone Precision and Recall Measures for Comparing Executions and Specifications of Dynamic Systems

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Present state Next state Q + M N

Section 11.6: Directional Derivatives and the Gradient Vector

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Expert System. Knowledge-Based Systems. Page 1. Development of KB Systems. Knowledge base. Expert system = Structured computer program

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Transcription:

1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt o Mthmtis B.J.M. Govrnmnt Collg, Chvr, Kollm, Krl, Ini. nitnson123@ymil.om 3 Dprtmnt o Mthmtis, Fthim Mt Ntionl Collg, Kollm, Krl, Ini. rsnp@yhoo.om Astrt In this ppr w will hrtriz th mily o pitur sris, rogniz y WHPA (wight hxpoli pitur utomton n lso, y using wight hxgonl tiling n hxgonl omino systms. W will prov tht hxgonl pitur sris is th projtion o hxgonl til lol sris n lso o xyz-lol sris. Thus w otin roust inition o lss o rognizl hxgonl pitur sris. Kywors: Wight hxgonl tiling systm, hxgonl omino systm, wight hxpoli pitur utomton Mthmtis Sujt Clssiition. Appli Mthmtis I INTRODUCTION Gnrlly whn ompr with othr mthos pitur is us or unrstning things in ttr wy. A lot o thnologis r thr to omput piturs with th hlp o omputrs. This hs rsult in th introution o pitur gnrting vis. Wight init utomt, two imnsionl utomt, th onpt o gnrliztion lol lngugs rom wors n irnt typs o grmmrs r th sis on whih ths vis vlop. Jurgn Dssow [1] hs isuss irnt typs o grmmrs in his ppr. In 1991, Gimmrsi n Rstivo propos th mily o rognizl lngugs (REC [2]. Tiling systms r us to in th lngugs in REC. K.S. Drsnmik t l. [3] hv in tht hxgonl piturs r us prtiulrly in pitur prossing n lso in img nlysis. In 2003, K.S. Drsnmik t l. us irnt ormlism or hxgonl pitur lngugs. Th ormlisms r hxgonl tiling systm, lol hxgonl pitur lngugs, rognizl hxgonl pitur lngugs, lll hxgonl Wng tils n inlly Wng systms. Introution out xyzomino systms wr m y thm n prov tht it is quivlnt to hxgonl tiling systms. In this ppr w will ssign wights to ths lol n xyz-lol hxgonl pitur vis using hxgonl tils or hxgonl ominos. By projtion vry simpl lol hrtriztions o WHPArognizl hxgonl pitur sris n on. II PRELIMINARIES Hr w rll th inition, strutur, xis n 2 2 2 Hxgonl tils n orrsponing ominos rom K.S. Drsnmik t l. [3] Fig. 1. II.1 x Hxgonl Piturs [3] Hr w rll th notions o hxgonl piturs n th hxgonl pitur lngug [4]. Lt Σ init lpht o symols. A hxgonl pitur p ovr Σ is hxgonl rry y z 40

2 Fig. 2. g or g o symols o Σ n th st o ll hxgonl piturs ovr Σ is not y Σ H A hxgonl pitur ovr th lpht,,, is shown in igur 1 Th st o ll hxgonl rrys ovr th lpht Γ is not y Γ H. Dinition II.1. [3] I x Γ H, thn ˆx is th hxgonl rry otin y surrouning x with spil ounry symol Γ. A hxgonl pitur ovr th lpht,,,,, surroun y is shown in ig. 1. Dinition II.4. [3] Lt L hxgonl pitur lngug. Th lngug L is xyz-lol i thr xists st o ominos s in ov ovr th lpht Σ suh tht L = ω Σ H /ll omino tils rlting to ω W writ L = L( i L is xyz-lol n is st o ominos ovr Γ. A hxgonl pitur lngug L is xyz-omino rognizl i thr xists omino systm D suh tht L = Π(L(. Th lss o hxgonl lngugs rognizl y omino systms is not y L(HDS Thorm II.5. [3] I HREC is th mily o ll rognizl hxgonl pitur lngugs n L(HDS is th lss o hxgonl lngugs rognizl y omino systms, thn w hv HREC = L(HDS II.2 Hxgonl Tils n Dominos [3] A hxgonl pitur o th orm shown in ig. 2 is ll hxgonl til ovr n lpht,,,,,,g. Givn hxgonl pitur p o siz (l,m,n, or g l,h m,k n w not B g,h,k (p, th st o ll hxgonl loks (or hxgonl su-piturs o p o siz (g,h,k. B 2 2 2 is in t hxgonl til. Dinition II.2. [3] Lt Σ init lpht. A hxgonl pitur lngug L Γ H is ll rognizl i thr xists hxgonl lol pitur lngug L (givn y st o hxgonl tils ovr n lpht Γ n mpping Π : Γ Σ suh tht L = Π(L. Th mily o ll rognizl hxgonl pitur lngugs will not y HREC. Exmpl II.3. Th st o ll hxgons ovr Σ = is rognizl y hxgonl tiling systm. St L = L n π(1 = π(0 = III TILE LOCAL AND xyz-local SERIES Hxgonl tils r piturs o siz (2,2,2 n hxgonl ominos hv siz (2,1,1 or (1,2,1 or (1,1,2. For pitur p w not T(p (rsptivly D(p th st o ll suhxgonl til (rsptivly su-hxgonl ominos o p. A lngug L Γ H is lol (rsptivly xyz-lol i thr xists st o hxgonl tils (rsptivly hxgonl ominos ovr Γ, suh tht L = p Γ H T(ˆp rsptivly L = p Γ H D(ˆp Thn (Γ, hrtrizs L. W writ L = L(. For pitur p Σ l m n, w will onsir su-hxgonl tils (su-hxgonl ominos t rtin positions o ˆp. In s o hxgonl tils, w n in: 1 0 0 1 0 0 1 L π For ll 1 i l+1, 1 j m+1, 1 k n+1 : t(ˆp i,j,k = ˆp i,j,k ˆp i,j,k+1 Now w onsir nothr ormlism to rogniz hxgonl piturs whih is s on omino systms introu y Lttux, t l. [5]. Hr w onsir ominos o th ollowing typs. ˆp i+1,j,k ˆp i,j+1,k ˆp i,j+1,k+1 ˆp i+1,j+1,k ˆp i+1,j+1,k+1 41

3 Also w onsir th su-hxgonl ominos in z, y, x- irtion istinguish y thir positions in ˆp. For ll 1 i l+2, or ll 1 j m+2, 1 k n+1 : z (ˆp i,j,k = ˆp i,j,k ˆp i,j,k+1 or ll 1 i l+2, or ll 1 j m+1, 1 k n+2 : y (ˆp i,j,k = ˆp i,j,k ˆp i,j+1,k or ll 1 i l+1, or ll 1 j m+2, 1 k n+2 : x (ˆp i,j,k = W gt th ollowing inition. ˆp i+1,j,k ˆp i,j,k Dinition III.1. A (wight hxgonl til systm is in y T 1 = (Σ,T whr T : (Σ 2 2 2 K is untion mpping hxgonl tils ovr Σ to K. It omputs th hxgonl pitur sris T 1 : Σ H K, in y or ll p Σ H ; T 1 (p = T(t(ˆp i,j,k 1 i I x(p+1 1 j I y(p+1 1 k I z(p+1 W ll S : Σ H K, hxgonl til-lol i thr xists hxgonl til systm T 1 stisying T 1 = S. Similrly or hxgonl ominos w hv th ollowing inition. Dinition III.2. A (wight hxgonl omino systm is in y D 1 = (Σ,D, whr D : (Σ (2,1,1,(1,2,1,(1,1,2 K mps hxgonl ominos ovr Σ to K. It omputs th sris D 1 : Σ H K in y, or ll p Σ H : D 1 (p = D( x (ˆp i,j,k 1 i I x(p+2 1 j I y(p+1 1 k I z(p+2 1 i I x(p+1 1 j I y(p+2 1 k I z(p+2 D( y (ˆp i,j,k 1 i I x(p+2 1 j I y(p+2 1 k I z(p+1 D( z (ˆp i,j,k. A hxgonl pitur sris S : Σ H K is ll xyzlol i thr xists omino-systm D 1 stisying D 1 = S. Th milis o hxgonl til lol sris n xyz-lol sris n not y K lo Σ H n K xyz Σ H rsptivly. Now, T 1 (rsptivly D 1 r ll hxgonl til (rsptivly hxgonl omino untion. Th milis o sris tht r projtions o hxgonl tillol (rsptivly hxgonl xyz-lol sris n not y K plo Σ H (rsptivly K pxyz Σ H. Proposition III.3. A hxgonl pitur lngug L Γ H is lol (xyz-lol rsptivly i n only i its hrtristi sris I L B Γ H is hxgonl til lol (xyz-lol rsptivly. In orr to prov prposition III.7, w n th ollowing inition III.4 n propositions III.5 n III.6, tht w hv isuss in th prvious ppr [7]. Dinition III.4. A wight hxpoli pitur utomton (WHPA is n 8 tupl B = (Q,R,F N, F S, F NW, F SW,F NE,F SE onsisting o init st Q o stts, init st o rulsr Σ K Q 6, s wll s six pols o ptn F N,F S,F NW,F SW,F NE,F SE Q [N-north, S-south, NW -north wst, SW -south wst, NEnorth st, SE-south st] Proposition III.5. Lt S K r Γ H sris omput y rul trministi WHPA. Thn S is rtionl Hxgonl pitur sris. Proposition III.6. Lt B WHPA ovr Σ. Thr xists rul trministi WHPA ovr n lpht Γ n projtion Π : Γ Σ stisying B = Π( B Proposition III.7. W hv K r Σ H K pxyz Σ H Proo. Using th projtion (III.6 w now onsir th rul trministi utomt s ollows. Lt B = (Q,R,F N,F S,F NW,F SE,F NE,F SW rul trministi omputing B = S. W my us th nottions vlop or th proo o prposition III.5 n inition III.4. For, Σ, in s th ourring ruls xist, w in hxgonl omino-untion D : (Σ 2 1 1,1 2 1,1 1 2 K s ollows: 1 i σ SW (r( F SW 1 i σnw (r( F NW 1 i σ NE (r( F NE 1 i σse (r( F SE 1 i σ NE (r( = σ SW (r( 1 i σ SE (r( = σ NW (r( 42

4 1 1 1 wight (r( i σn (r( F N 1 i σs (r( F S wight (r(, i σs (r( = σ N (r( D mps ll othr hxgonl ominos to 0. Thn D 1 = (Σ, D is hxgonl omino-systm. For hxgonl pitur p with (uniqu sussul omputtion R H in B, th prout vlus od(tkn ovr th nonil omino ovring o ˆp oinis with wight (. This is us or vry position p i,j,k o p, thr xists prisly on tor wight (r(p i,j,k in th prout or D 1 (p. On th othrhn, ip hs no sussul omputtion in B, thn lrly th inition o D givs D 1 (p = 0. Thus D 1 = S Proposition III.8. Evry xyz-lol sris is hxgonl tillol. Proo. Lt S : Γ H K n xyz-lol sris ovr n lpht Γ, omput y D 1 = (Γ,D. W in T 1 = (Γ,T s hxgonl til-systm omputing S suh tht T : (Γ 2 2 2 K nots th hxgonl til untion. For ritrry Γ n,,,, Γ, w put (hr nwnorth wst ornr, n- north st ornr, n- north ornr, n- north st g, w- wst g, m- mil ( nw : T = D( D( ( D( D( n : T ( = D( D( D( D( D( D( ( n : T = D( D( D( D( n : T w : T ( = D( D( D( D( D( D( ( = D( D( D( D( D( D( ( m : T g = D( g D( D( Furthrmor w st ( T = 0. Th vlus o D ovr th hxgonl omino-ovring o hxgonl pitur p r istriut with T ovr th hxgonl til-ovring or p. Evry x (ˆp i,j,k, y (ˆp i,j,k n z (ˆp i,j,k hppns prisly on in th prout or T 1 (p. Thn or p Γ H, w gt T1 (p = D 1 (p = (S,p. Proposition III.9. W hv K plo Σ H K r Σ H Proo. It suis to prov th rsult or hxgonl til lol sris. Lt S : Σ H K hxgonl til lol, omput y T1 = (Σ, T with hxgonl til untion T : (Σ 2 2 2 K. W in B = (Q,R,F N,F S,F NW,F SW,F NE,F SE s WHPA ovr Σ omputing S y putting Q = (Σ 2 2 2 n F N = Σ,,, Σ F S = Σ,,, Σ F NW = Σ,,,, Σ F SW = Σ,,,, Σ F NE = Σ,,,, Σ 43

5 F SE = Σ,,,, Σ W st R = R nw R n R n R n R w R m Σ K Q 6 with ritrry,,,,,, g,h,t, x,y,z Σ. R nw =,ω (,, g,, g, g, g,/ Σ ( ( whr ω ( = T ( ( g ( g R n =,ω (,,,, g g, z, g Σ x y ( ( whr ω ( = T ( ( g g R n =,ω (,, g, g,, y x Σ g whr ω ( = T ( x ( ( ( g R n =,ω (, g,, g, y z g,, x Σ x y ( ( whr ω ( = T g g ( ( g R w =,ω (,, g, g, g g, x, Σ ω ( = T ( ( g ( g ( x x y R m =,ω (,, g z, g, z x,, y Σ g y y g ( whr ω ( = T To prov B = S, w osrv th ollowing. Th ov onstrution with its pting onition givs wight 44

6 hxpoli pitur utomton tht hs prisly on sussul run or vry lmnt in Σ H. This run simults th istriution o wights long th nonil hxgonl tilovring o th hxgonl pitur. Suppos tht B Σ H with sussul omputtion R H in B is givn wight ( = i,j,k wight ( i,j,k. In th multiplition, th img o th hxgonl til-untion o th rsptiv hxgonl til t vry position o th nonil hxgonl til ovring o ˆp ours xtly on. Agin, th inition o th vlus o ω ( simult th ovring in suh wy tht no othr wights our. For p Σ H, w hv B (p = T(t(ˆp i,j,k = T 1 (p 1 i I x(p+1 1 j I y(p+1 1 k I z(p+1 = (S,p IV CONCLUSION In this ppr w introu irnt vis to hrtriz rognizl hxgonl pitur sris. W tri to prov tht hxgonl pitur sris is th projtion o hxgonl til lol sris n lso o xyz-lol sris. In similr mnnr, w n xtn vrious othr proprtis o rognizl rtngulr pitur sris to hxgonl rognizl pitur sris. REFERENCES [1] Jurgn Dssow (2006 Grmmtil Pitur Gnrtion, Otto-vongurik-univrsitt Mgurg, Fkultt Fr Inormtik. [2] Gimmrrsi D. & Rstivo A., Rognizl pitur lngugs. In Prlll img prossing, 31 46 (Worl Sintii [3] K.S. Drsnmik, K. Krithivsn, C. Mrtin-Vi & K.G. Surmnin, Lol n Rognizl hxgonl pitur lngugs. Int. journl pttrn rognition Arti-Intllign 19, 853 871 [4] Bozpliis S. & Grmmtopoulou, A Rognizl Pitur Sris. J. Autom-Lng. Com. 10, 159 183 (2005 [5] M. Lttun n D. Simplot, Rognizl pitur lngugs n omino tiling, Thortil Computr Sin, 178, (1997, (275 283 [6] K.S. Drsnmik, Kml Krithivsn, K.G. surmnin, (2003 P systm gnrting Hxgonl pitur lngugs, Ltur nots in Computr Sin, Springr Brlin Hilrg, Volum 2933 pp. 168 180. [7] Jy Arhm & Drsnmik K.S., Chrtriztions o Hxgonl rognizl Pitur Sris, in Ntionl Conrn on Emrging Trns in Mthmtis n Applitions in Enginring n Thnology 2018 45