RDECOM. Optimal pulse schemes for high-precision atom interferometry U.S.ARMY. Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1

Similar documents
Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Precision atom interferometry in a 10 meter tower

Advanced accelerometer/gradiometer concepts based on atom interferometry

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Fundamental Physics with Atomic Interferometry

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Towards compact transportable atom-interferometric inertial sensors

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Tests of fundamental physics using atom interferometry

Quantum superposition at the half-metre scale

Progress on Atom Interferometer (AI) in BUAA

Large Momentum Beamsplitter using Bloch Oscillations

Interferometry and precision measurements with Bose-condensed atoms

Gravitational tests using simultaneous atom interferometers

Atom interferometry applications in gravimetry

Travaux en gravimétrie au SYRTE

New Searches for Subgravitational Forces

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Atom interferometry in microgravity: the ICE project

arxiv: v2 [gr-qc] 6 Jan 2009

Testing General Relativity with Atom Interferometry

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

State of the art cold atom gyroscope without dead times

Atomic Quantum Sensors and Fundamental Tests

arxiv: v1 [physics.ins-det] 25 May 2017

A Guide to Experiments in Quantum Optics

NanoKelvin Quantum Engineering

Pioneer anomaly: Implications for LISA?

Absolute gravity measurements with a cold atom gravimeter

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

An Overview of Advanced LIGO Interferometry

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Forca-G: A trapped atom interferometer for the measurement of short range forces

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Development of ground based laser interferometers for the detection of gravitational waves

Lecture 2:Matter. Wave Interferometry

Squeezed Light Techniques for Gravitational Wave Detection

Matter wave interferometry beyond classical limits

Precision Attitude and Translation Control Design and Optimization

Laser cooling and trapping

Roger Ding. Dr. Daniel S. Elliott John Lorenz July 29, 2010

An ultra-stable thermal environment in high precision optical metrology

UNIVERSITY OF SOUTHAMPTON

Atom Interferometry. Prof. Mark Kasevich Dept. of Physics and Applied Physics

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer

Progress towards a high dimensional stability telescope for gravitational wave detection

Looking For Dark Energy On Earth: A New Experiment Using Atom Interferometry That Galileo Would Understand

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Localization of Ultra-Cold Particles over Rough Substrates

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

Atom Interferometry I. F. Pereira Dos Santos

Reviewers' comments: Reviewer #1 (Remarks to the Author):

An Introduction to Gravitational Waves

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

Atom Quantum Sensors on ground and in space

Day 3: Ultracold atoms from a qubit perspective

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

POEM: Physics of Emergent Materials

Energy Losses and Gravitational Radiation

Compensation of gravity gradients and rotations in precision atom interferometry

Gas Dynamics: Basic Equations, Waves and Shocks

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Observing the gravitational universe from space

KINETIC BOOKS PHYSICS CORRELATED TO TEXAS PHYSICS STANDARDS CORRELATION

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

The Advanced LIGO detectors at the beginning of the new gravitational wave era

Shortcuts To Adiabaticity: Theory and Application. Xi Chen

A preliminary measurement of the fine structure constant based on atom interferometry

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

LIGO s Detection of Gravitational Waves from Two Black Holes

Recent Advances in High Resolution Rotation Sensing

Quantum correlations and atomic speckle

Lecture 18 Vacuum, General Relativity

Baccalieu Collegiate. Physics Course Outline

New directions for terrestrial detectors

Graduate Written Exam Part I (Fall 2011)

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Stanford, Space Gravity Research Group

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

Gravitational & Planetary Research Program

Interference experiments with ultracold atoms

UK National Quantum Technology Hub in Sensors and Metrology

Navigation, Gravitation and Cosmology with Cold Atom Sensors

(Portland, OR) August 25, Strontium atoms seen to fly in formation in experiment

Autonomous Mobile Robot Design

Gottfried Wilhelm Leibniz Universität Hannover

GP-B Attitude and Translation Control. John Mester Stanford University

Transcription:

U.S.ARMY U.S. ARMY RDCOM AH.L RSARCH LABORATORY Optimal pulse schemes for high-precision atom interferometry Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1 1 U.S. Army Research Lab, 2 Stanford University 23 August 218

optical interferometer: beamsplitter beamsplitter 1/9

optical interferometer: beamsplitter beamsplitter 1/9

optical interferometer: beamsplitter beamsplitter atom interferometer: atoms have mass and internal structure couple to more external perturbations (gravity) 1/9

optical interferometer: beamsplitter beamsplitter mirror? beamsplitter? atom interferometer: atoms have mass and internal structure couple to more external perturbations (gravity) 1/9

+4nk +2nk 1-2nk - 4nk.. - 6nk laser cou pies between electronic states: absorbs photon momentum 2/9

1 m atomic fountain at Stanford: ultracold 87 Rb atomic cloud +4hk +2hk 1-2hk - 4hk.. - 6hk. laser cou pies between electronic states: absorbs photon momentum "!g ' ' C.Q t= 2T +-' "cii Cl. T 2T n/2 (n/2-1}1t (n/2-1)1t 1t (n/2-1}1t (n/2-1)1t 1t/2 Kovachi et al. Nature 528, 53 (215) 2/9

1 m atomic fountain at Stanford: ultracold 87 Rb atomic cloud +4hk +2hk 1-2hk - 4hk.. - 6hk. laser cou pies between electronic states: absorbs photon momentum "!g ' ' C.Q t = 2T +-' "cii Cl. T 2T _ U, l,ll,..,,l,l ll,l,,t,lu,'u'--- n/2 (n/2-1}1t (n/2-1)1t 7t (n/2-1}1t (n/2-1)1t n/2 Kovachi et al. Nature 528, 53 (215) 2/9

Army applications: ultra-precise measurement of acceleration / gravity inertia navigation: submarines, autonomous vehicles -not jammable! gyroscopes gravity gradient sensors weapons system control geospatial mapping drone or sate ite based detection of underground structures 3/9

1 m atomic fountain: sensitivity 1-13 g/ -/Hz AOSense (21) 1-6 g/-/rz state of the art 1-9 g/-/rz 4/9

1 m atomic fountain: sensitivity 1-13 g/ -/Hz factors: signal to noise ratio large momentum transfer AOSense (21) 1-6 g/-/rz state of the art 1-9 g/-/rz 4/9

Apply optimal control to atom optics pulses =} increase fide ity =} robustness against fluctuations 5/9

T Time 2T 6/9

Time 2T 6/9

+41ik +21ik o +61ik... -21ik C -41ik.. ;e (/) -61ik a. Time T 2T 6/9

+41ik +21ik o +61ik... -21ik C -41ik.. ;e (/) -61ik a. Time T 2T 6/9

+41ik +21ik o +61ik... -21ik C :;:; - 41ik.. -61ik a. "ui Time T 2T train of pulses rapid adiabatic passage: tune th rough laser frequency at constant amplitude 6/9

a,_ 1 Vl '- :5 3 +61ik.. +41ik a.- +21ik -~ -.c: 8 o N 6 ::, 4-21ik C C: :;:; -41ik Q) 2 "ui.. Time -61ik a. T -2 2T 5 1 15 2 time (1/w,}. train of pulses rapid adiabatic passage: tune th rough laser frequency at constant amplitude 6/9

~~lr------------------, :5 3 a.-.a 4 ~ 2-2 oo.i.i..i"tc 5~.,._~~&..l----'-::"~.._., J_.,.._j 1 15 2 time (1/w,} +41ik +21ik o -21ik -41ik +61ik..... C :;:; (/) -61ik a. Time T 2T e QJ 1-1 ~ ~ 1-2 co co 1-3 :5 1- a. 4 rapid adiabatic passage a. 1-s ~% ~~ 7nb,l,.,,_,l,.,,_,,.,,_'::-:::'~,,, ~ 9% 95,, /C 1 % 15% 11% pulse amplitude 6/9

a,_ 1 Vl '- :5 3 a.- - ~ -.c: N 8 6 ::, 4 C: Q) 2-2 15 2 compress +4/ik +2/ik o -2/ik -4/ik.. -6/ik a,_ 5 Vl '- :5 3 a.- - ~ -.c: N 8 6 ::, 4 C: Q) 2-2 5 1 15 2 25 3 time (1/w,) 35 6/9

a,_ 1 Vl '- :5 3 a.- - ~ -.c: N 8 6 ::, 4 C: Q) 2-2 15 2 compress +4/ik +2/ik o -2/ik -4/ik.. -6/ik a,_ 5 Vl '- :5 3 a.- - ~ -.c: N 8 6 ::, 4 C: Q) 2-2 5 1 15 2 25 3 time (1/w,) 35 6/9

cu_ 1 ll '- :: 3 c.- ~ ~ 8-6 ::, 4 ~ ~ 2-2 1;;,,1,,_..,,,_,,.._,..,..,,,..,,.,..,_,_ so 1 15 2 time (1/w,) +4/ik +2/ik o -2/ik -4/ik.. -6/ik 15 2 25 time (1/w,) 7/9

QJ 5 Vl -;: :5 3 a.- ~;i.a,,_,_..11,..11,1..,1.ii..,_i.i..,i.i,..i,..,,_,_..11,..11,1..,1.ii..,._. 8 +4/ik +2/ik o -2/ik -4/ik.. -6/ik 1 2 25 3 35 optimize for fidelity.-~..,_.ii.,.11,,..11.,_.ii.,.,_..i,..i..,..i.11,,..ii..i..i.ii.. 8 5 1 15 2 25 3 35 time (1/w,) 1 QJ 1-1 QJ.._ ~ 1-2 co C 1-3 co :5 1- a. 4 a. 1-~% 95% 1% 15% 11% pulse amplitude 7/9

QJ 5 Vl -;: :5 3 a.- ~ 8 ;i.a,,_,_..11,..11,1..,1.ii..,_i.i..,i.i,..i,..,,_,_..11,..11,1..,1.ii..,._. +4/ik +2/ik o -2/ik -4/ik.. -6/ik 1 2 25 3 35 optimize for fidelity.-~..,_.ii.,.11,,..11.,_.ii.,.,_..i,..i..,..i.11,,..ii..i..i.ii.. 8 5 1 15 2 25 3 35 time (1/w,) 1 QJ 1-1 QJ.._ ~ 1-2 co C 1-3 co :5 1- a. 4 a. 1-~% 95% 1% 15% 11% pulse amplitude 7/9

V.i''l!!.9 +61ik. cu_ 5 ll '- +41ik :: 3 c.- +21ik ~ -C N 8 o 6 ::, -21ik C. 4 C :;:; cu 2-41ik "ui.. -61ik a. -2 s 1 15 2 25 3 time (1/w,) Time T 2T.. 5 1 cu rn "'i:: "53 c.- QJ 1-1 QJ.._ ~ ~ 1-2 -C N C 1-3 :::::,. C cu :5 1-4 a. -2 a. 1-~% co co 5 1 15 2 25 3 35 95% 1% 15% 11% time (1/w,) pulse amplitude 8/9

QJ 5 Vl -;: :5 3 a.- ~:;i.i..iiii.i...11i&.iiii.i..iii.."':....i.. _..i. 8 6 ::, 4 C: QJ 2-2 5 1 _1.--,,. 1.1..: _ +4/ik +2/ik o -2/ik -4/ik.. -61ik 5 QJ_ Vl '- :5 3 a.- -.:i.:: -.c:: N 8 6 ::, 4 C: QJ 2-2 5 1 15 2 25 3 time (1/w,) 35 1 QJ 1-1 QJ.._ ~ 1-2 co c: 1-3 co :5 1- a. 4 a. 1-~% 95% 1% 15% 11% pulse amplitude 8/9

QJ 5 Vl -;: :5 3 a.- ~:;i.i..iiii.i...11i&.iiii.i..iii.."':....i.. _..i. 8 6 ::, 4 C: QJ 2-2 5 1 _1.--,,. 1.1..: _ +4/ik +2/ik o -2/ik -4/ik.. -61ik 5 QJ_ Vl '- :5 3 a.- -.:i.:: -.c:: N 8 6 ::, 4 C: QJ 2-2 5 1 15 2 25 3 time (1/w,) 35 1 QJ 1-1 QJ.._ ~ 1-2 co c: 1-3 co :5 1- a. 4 a. 1-~% 95% optimized for robustness 1% 15% 11% pulse amplitude 8/9

Conclusion relative phase difference: ~ cf> = -2kmaxgT 2 ~g optima control can com press pulses t= 2T by order of magnitude while guarant eeing robustness Army applications: ultra-precise measurement of acceleration / gravity inertia navigation, satellite based gravitational sensing 9/9