Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Similar documents
Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017

Direct detection calculations. Riccardo Catena. Chalmers University

Can the DAMA annual modulation be explained by Dark Matter?

Two-body currents in WIMP nucleus scattering

Enectalí Figueroa-Feliciano

DM direct detection predictions from hydrodynamic simulations

A survey of recent dark matter direct detection results

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

A halo-independent lower bound on the DM capture rate in the Sun from a DD signal

The XENON1T experiment

What is the probability that direct detection experiments have observed Dark Matter?

Phenomenological studies in dark matter direct detection: from the impact of the escape speed estimates to tests of halo models

Thermalization time scales for WIMP capture by the Sun

light dm in the light of cresst-ii

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Background and sensitivity predictions for XENON1T

Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof.

Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches

Revisiting the escape speed impact on dark matter direct detection

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

arxiv: v1 [astro-ph.co] 7 Nov 2012

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

Solar and atmospheric neutrinos as background for direct dark matter searches

HIGGS-PORTAL DARK MATTER AT THE LHC

Chapter 12. Dark Matter

Direct Detection of the Dark Mediated DM

Generalized spin dependent WIMP nucleus interactions and the DAMA modulation effect

Introduction to Class and Dark Matter

Axion search with Dark Matter detector

Recent results from PandaX- II and status of PandaX-4T

Surprises in (Inelastic) Dark Matter

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan.

Lecture 12. Dark Matter. Part II What it could be and what it could do

Is the effect of the Sun s gravitational potential on dark matter particles observable?

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

Direct Search for Dark Matter

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

Inert Doublet Model and DAMA:

Development of a New Paradigm

Dark Matter, Low-Background Physics

arxiv: v4 [hep-ph] 21 Dec 2016

The Search for Dark Matter with the XENON Experiment

Direct Detection of! sub-gev Dark Matter

The local dark matter halo density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

No combined analysis of all experiments available

Inelastic Dark Matter and DAMA

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1

Direct Detection of Dark Matter with LUX

Status of Dark Matter Detection Experiments

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

ATLAS Missing Energy Signatures and DM Effective Field Theories

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

Determining WIMP Properties with the AMIDAS Package

Dark Matter Searches. Marijke Haffke University of Zürich

arxiv: v3 [hep-ph] 6 Oct 2010

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

DARK MATTER INTERACTIONS

Down-to-earth searches for cosmological dark matter

Update on Light WIMP Limits: LUX, lite and Light

arxiv: v1 [hep-ph] 30 Jun 2011

Dark Matter Caustics

Dark Matter and Dark Energy components chapter 7

The Direct Search for Dark Matter

Del Nobile, Eugenio ; Kouvaris, Christoforos ; Panci, Paolo ; Sannino, Francesco; Virkajarvi, Jussi

Extracting Astrophysical Information about Galactic Dark Matter with and without Astrophysical Prior Knowledge

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

arxiv: v2 [hep-ph] 31 Oct 2008

MACRO Atmospheric Neutrinos

Darkside-50, DarkSide-20k and the Global Collaboration to reach the Neutrino Floor with liquid argon

CHANNELING IN DIRECT DARK MATTER DETECTION

Composite dark matter

SuperCDMS: Recent Results for low-mass WIMPS

arxiv: v1 [physics.ins-det] 4 Nov 2017

The WIMPless Miracle and the DAMA Puzzle

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

The XMASS experiment. Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology

Progress of the AMIDAS Package for Reconstructing WIMP Properties

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments.

New dark matter direct detection signals

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

New directions in direct dark matter searches

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

WIMP Dark Matter Search with XENON and DARWIN

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Direct Search for Dark Matter

Cryodetectors, CRESST and Background

- A Bayesian approach

Transcription:

Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216

Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon interactions (Fitzpatrick et. al, 213) Comparison with observations: R. Catena, A. Ibarra, S. Wild, arxiv:162.474 R. Catena and P. Gondolo, JCAP 158, 8, 22 (215) R. Catena, JCAP 149, 9, 49 (214) R. Catena and P. Gondolo, JCAP 149, 9, 45 (214) R. Catena, JCAP 147, 7, 55 (214) Direct Detection

Evidence for dark matter Dark matter is a dissipation-less fluid that makes up about 5/6 of the total matter in the Universe The most famous evidence: the rotation curves of spiral galaxies rotation curve of M33 dark matter halo!! stellar disk interstellar gas

Evidence for dark matter Further evidence: from the motion of stars in the solar neighborhood, to the largest scales we see in the Universe The most compelling evidence: the formation of cosmological structures If only ordinary matter and photons are present in the Universe, galaxies unavoidably form too late The dissipative coupling of electron/protons and photons delays the formation of galaxies Need for a dissipation-less fluid dark matter Yet, the particles forming dark matter have so far escaped detection...

Dark matter direct detection / basics Geometry: Basic concept: It searches for nuclear recoil events induced by the non-relativistic scattering of Milky Way dark matter particles in low-background detectors

Dark matter direct detection / basics Geometry: Kinematics: - For m χ 1 GeV, one expects a flux of 7 1 4 cm 2 s 1 - Expected recoil energy, E R = (2µ 2 T v 2 /m T ) cos 2 θ O(1) kev Modulation: - The inclination of the Earth s orbit induces an annual modulation in the number of recoil events

Dark matter direct detection / measurements Example: scintillation plus charge signal (e.g. LUX, XENON, LZ)

Dark matter direct detection / DAMA modulation signal DAMA results: data vs cosinusoidal fitting function 2-4 kev Residuals (cpd/kg/kev) DAMA/LIBRA 25 kg (.87 ton yr) Time (day)

Dark matter direct detection / physical observables Rate of dark matter-nucleus scattering events: dr = ρ χ ξ T f (v + v e(t)) v dσ T (v 2, q 2 ) d 3 v de R m T m χ de R T v>v min (q) galactic distribution particle nature Modulation amplitude: 1 1 [ ] A(E, E +) = R(E, E +) R(E, E +) E + E 2 June 1st Dec 1st

Local dark matter density in 5 steps Assume a mass model for the Milky Way: halo, stellar disk, bulge Calculate the observables: rotation curves, surface density, velocity dispersion of stars, weak lensing optical depth, etc... Compare predictions with astronomical observations: the Bayesian approach has proven to be a powerful tool for this Extract preferred regions in parameter space, e.g. credible regions Translate them into an estimate for the local dark matter density, e.g. posterior PDF

Local dark matter density: Bayesian analysis Catena & Ullio 21

Local dark matter velocity distribution in 5 + 3 steps Simplifying assumption: spherically symmetric galactic gravitational potential Use Eddington s inversion formula to relate the local dark matter velocity distribution to the parameters of the assumed mass model From the posterior PDF of the model parameters, obtain the posterior PDF of local dark matter velocity distribution at sampled velocities

Local dark matter velocity distribution: Bayesian analysis Bozorgnia, Catena and Schwetz 214 4 1-6 3 1-6 g χ (u) [(GeV/cm 3 ) (s/km) 2 ] 2 1-6 1 1-6 2 4 6 8 u [km/s]

Dark matter-nucleus scattering cross-section Standard paradigm: spin-independent and spin-dependent dark matter-nucleon interactions dσ T = m T 1 A F e iq r i (H de R 2πv 2 SI + H SD) I (2j χ + 1)(2J + 1) spins i=1 nucleus DM state 2 one-body DM-nucleon interaction

Spin-independent interaction H SI Scalar/Scalar coupling: L SS = 1 Λ q C SS 3 q χχm q qq S-matrix element: f is i = iū χ(p )u χ(p) d 4 x e i qx N q c q q(x)q(x) N i(2π) 4 δ 4 (q k + k) ξ χ ξ χ ξ N (b + b1τ3)ξ N Underlying non-relativistic Hamiltonian H SI = b τ 1 χ1 N t τ c1 τ 1 χn t τ τ=,1 τ=,1

Spin-dependent interaction H SD Axial-Vector/Axial-Vector: L AA = 1 Λ q C AA 2 q χγ µ γ 5χ qγ µγ 5q S-matrix element: f is i = iū χ(p )γ µγ 5u χ(p) d 4 x e i qx N q c q q(x)γ µ γ 5q(x) N i(2π) 4 δ 4 (q k + k) ξ χ σ χξ χ ξ N (a + a1τ3)σ Nξ N Underlying non-relativistic Hamiltonian H SD = a τ σ χ σ N t τ c4 τ Ŝχ Ŝ N t τ τ=,1 τ=,1

Dark matter direct detection / physical observables Rate of dark matter-nucleus scattering events: dr = ρ χ ξ T f (v + v e(t)) v dσ T (v 2, q 2 ) d 3 v de R m T m χ de R T v>v min (q) galactic distribution particle nature Modulation amplitude: 1 1 [ ] A(E, E +) = R(E, E +) R(E, E +) E + E 2 June 1st Dec 1st

Exclusion limits / Favored regions Billard et al. 214 7 Be Neutrinos CDMSlite (213) DAMIC (212) COHERENT NEUTRIN O SCATTERING 8 B Neutrinos CoGeNT (212) CDMS Si (213) CRESST DAMA COHERENT NEU TRI NO SCATTERING EDELWEISS (211) 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 1 11 1 12 1 13 14 1 1 1 1 141 WIMPMass GeV c 2 SIMPLE (212) COHERENT NEUTRINO SCATTERING Atmospheric and DSNB Neutrinos COUPP (212) ZEPLIN-III (212) CDMS II Ge (29) Xenon1 (212) LUX (213) WIMP nucleon cross section pb

Effective Theory (ET) of dark matter direct detection Assumption: q /m V 1, where m V is the mediator mass ET basic symmetries: Galilean and translation invariance ET basic operators: Consider the scattering χ(p) + N(k) χ(p ) + N(k ) Momentum conservation M(p, k, q) Galilean invariance M(v = p/m χ k/m N, q) In general, M = M(v, q, S χ,s N ) We therefore identify five basic operators 1 χn iˆq ˆv = ˆv + ˆq 2µ N Ŝ χ Ŝ N The most general Hamiltonian for χ-n interactions is a power series in ˆq/m V. Each term in the series is a scalar combination of basic operators.

Effective Hamiltonian for dark matter-nucleon interactions Only 14 linearly independent operators can be constructed from the basic operators, if we demand that they are at most quadratic in ˆq (and arise from the exchange of a mediator of spin 1) The most general Hamiltonian density is therefore Ĥ(r) = τ=,1 k ck τ Ôk(r) t τ t = 1, t 1 = τ 3 c p k = (c k + c 1 k )/2 and c n k = (c k c 1 k )/2

Dark matter-nucleon interaction operators Ô 1 = 1 χn Ô 9 = iŝ χ (ŜN ˆq ( ) Ô 3 = iŝn ˆq m N ˆv Ô 4 = Ŝχ ŜN Ô ( ) Ô 5 = iŝχ ˆq m N ˆv Ô 6 = (Ŝχ ˆq m N ) (ŜN ) ˆq m N Ô 1 = iŝn ˆq m N m N ) 11 = iŝχ ˆq m N ) Ô 12 = (ŜN Ŝχ ˆv Ô 7 = ŜN ˆv Ô 14 = i (Ŝχ Ô 8 = Ŝχ ˆv Ô 15 = (Ŝχ ) ˆq m N ) Ô 13 = i (Ŝχ ˆv (ŜN ) ) ˆq (ŜN m N ˆv ) ) ˆq [(ŜN m N ˆv ] ˆq m N

Dark matter-nucleus scattering cross-section In the ET framework, the dark matter-nucleus scattering cross-section is dσ T = m T 1 F de R 2πv 2 (2j χ + 1)(2J + 1) spins A dr e iq r Ĥ i (r) I i=1 2 This expression depends on: - 28 coupling constants - 8 nuclear response functions Available nuclear response functions: - For Xe, Ge, I, Na, F: Anand et al. 213 - For 16 elements in the Sun: R. Catena & B. Schwabe 215

Comparison with null searches I compare theory and observations in global multidimensional statistical analyses varying all model parameters simultaneously Experimental data simultaneously included in the fit: LUX XENON1 XENON1 CDMS-Ge CDMS-LT SuperCDMS CDMSlite PICASSO SIMPLE COUPP

Global limits: mass vs interaction strengths R. Catena and P. Gondolo, JCAP 149 (214) 45 1.8.6.4.2 log 1 (c 1 m 2 v ) 1 1 2 3 4 log (c m 2 ) 1 4 v 3 2 1 1 1D marginal pdf 1D profile Likelihood 99% CR 95% CL Profile likelihood color code: 1 2 3 4 log (m /GeV) 1 χ 5 1 2 3 4 log (m /GeV) 1 χ 2 1 2 3 4 log (m /GeV) 1 χ.5 1 4 4 4 4 log (c m 2 ) 1 3 v 2 2 log 1 (c 5 m 2 v ) 2 2 log (c m 2 ) 1 6 v 2 2 log (c m 2 ) 1 7 v 2 2 4 1 2 3 4 log 1 (m χ /GeV) 4 1 2 3 4 log (m /GeV) 1 χ 4 1 2 3 4 log (m /GeV) 1 χ 4 1 2 3 4 log 1 (m χ /GeV) 4 4 4 4 log (c m 2 ) 1 8 v 2 2 log 1 (c 9 m 2 v ) 2 2 log (c m 2 ) 1 1 v 2 2 log (c m 2 ) 1 11 v 2 2 4 1 2 3 4 log 1 (m χ /GeV) 4 1 2 3 4 log 1 (m χ /GeV) 4 1 2 3 4 log 1 (m χ /GeV) 4 1 2 3 4 log 1 (m χ /GeV)

Operator interference Pairs of operators, or isoscalar and isovector components of the same operator can interfere For instance, the operators Ô 1 and Ô 3 generate a transition probability proportional to M NR 2 spins = 4π [ 2J + 1 ττ R. Catena and P. Gondolo, JCAP 158, 8, 22 (215) c τ 1 cτ 1 W ττ q 2 M (y) + 1 8 m N 2 ( + q2 q 2 m N 2 4m N 2 c τ 3 cτ 3 W ττ Φ v 2 T cτ 3 cτ 3 W ττ Σ (y) ) ] (y) + cτ 1 cτ 3 W ττ Φ M (y) 1 c 1 c 1 1 (all data) 1 1 c 1 c 1 1 (all data) 1 c 1 c 3 (all data) c 1 (LUX).8 c 1 1 c 3 1 (all data) c 1 1 (LUX).8 log 1 (c 1 m 2 v ) 1 2 3.6.4 log 1 (c 1 1 m 2 v ) 1 2 3.6.4 4.2 4.2 5.5 1 1.5 2 2.5 3 3.5 4 log (m /GeV) 1 χ 5.5 1 1.5 2 2.5 3 3.5 4 log (m /GeV) 1 χ

DAMA confronts null searches I j Is there a linear combination of Ô k such that DAMA can be reconciled with null searches? j c T 95% -u.l. Aexp-1 (m χ) c < 1 c T 95% -u.l. Aexp-1 (m χ) c < 1 c T 95% -u.l. Aexp-2 (m χ) c < 1 c T 95% -u.l. Aexp-2 (m χ) c < 1 increasing nσ c τ (, ) c τ up to n max σ (, ) c T A nσ-l.l. DAMA[E,E+] (mχ) c > 1 c T A nmax σ -l.l. DAMA[E,E+] (mχ) c > 1 c τ i c τ i R. Catena, A. Ibarra, S. Wild, arxiv:162.474

DAMA confronts null searches II 7σ 6σ DD + Super-K (τ + τ /W + W ) DM with non-zero spin 7σ 6σ DD + Super-K (τ + τ /W + W ) DM with zero spin N σ max 5σ Only DD N σ max 5σ Only DD 4σ 4σ 3σ 3 1 1 mχ [GeV] Q Na =.3, Q I =.9 3σ 3 1 1 mχ [GeV] Q Na =.3, Q I =.9 7σ 6σ DD + Super-K (τ + τ /W + W ) DM with non-zero spin 7σ 6σ DD + Super-K (τ + τ /W + W ) DM with zero spin N σ max 5σ Only DD N σ max 5σ Only DD 4σ 4σ 3σ 3 1 1 mχ [GeV] Q Na =.4, Q I =.5 3σ 3 1 1 mχ [GeV] Q Na =.4, Q I =.5 R. Catena, A. Ibarra, S. Wild, arxiv:162.474

Conclusions A complete classification of all one-body dark matter-nucleon interaction operators has recently been performed Current direct detection data place interesting constraints on dark matter-nucleon interaction operators commonly neglected Destructive interference effects can weaken standard direct detection exclusion limits by up to 1 order of magnitude in the coupling constants Even within this general theoretical framework, it seems to be impossible to reconcile DAMA with null searches