A COMPLEX IRON SALT & BEER S LAW

Similar documents
RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

ENTHALPY OF FORMATION OF MgO

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

SYNTHESIS & ANALYSIS OF A COMPLEX IRON SALT

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

MEASUREMENT: PART II

A Box Full of Particles

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 11 Beer s Law

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Determining the Concentration of a Solution: Beer s Law

Experiment 11 Beer s Law

Experiment 7A ANALYSIS OF BRASS

Determining the Concentration of a Solution: Beer s Law

ELECTRICAL CONDUCTION IN SOLUTIONS

Kinetics of Crystal Violet Bleaching

REVIEW OF LAB TECHNIQUES

Spectrophotometric Determination of the Copper (II) Sulfate Pentahydrate Content in a Mixture

K = [C]c [D] d [A] a [B] b (5)

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes..

Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

The Determination of an Equilibrium Constant

THE IRON(III) THIOCYANATE REACTION SYSTEM

Introduction to Spectroscopy: Analysis of Copper Ore

Lab 13.3 Determining K c via Colorimetry

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample

Lab Investigation 4 - How could you make more of this dye?

A Study of Beer s Law Prelab

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE

The Synthesis and Analysis of Aspirin

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES

CH 112 Special Assignment #4 Chemistry to Dye for: Part C

REVIEW OF LAB TECHNIQUES

Shown below is a sample titration curve for a diprotic acid. Note the two equivalence points.

Conductometric Titration & Gravimetric Determination of a Precipitate

Determination of an Equilibrium Constant

Introduction to Spectroscopy: Analysis of Copper Ore

The Determination of an Equilibrium Constant

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

Introduction. Concepts Kinetics Order of reaction Reaction rate Colorimetry. Background

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Lab #12: Determination of a Chemical Equilibrium Constant

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **

Name Period Date. Lab 9: Analysis of Commercial Bleach

aa + bb cc + dd Equation 1

Lab 5: Calculating an equilibrium constant

The CCLI Initiative Computers in Chemistry Laboratory Instruction

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron

KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION

ASCORBIC ACID METHOD FOR PHOSPHORUS DETERMINATION

PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER

Introduction to Spectroscopy: Analysis of Copper Ore

Titration with an Acid and a Base

Introduction to Spectroscopy: Analysis of Copper Ore

Solubility Product Constants

Determining the Rate Law and Activation Energy for the Methyl Blue Reaction:

EXPERIMENT #3 A Beer's Law Study

The Determination of an Equilibrium Constant

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Acid-Base Titration Curves Using a ph Meter

The Determination of an Equilibrium Constant

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point.

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Acid-Base Titration Curves Using a ph Meter

Percentage of Acetic Acid in Vinegar

TITRATION OF AN ACID WITH A BASE

Density of Aqueous Sodium Chloride Solutions

Exp 03 - Reaction Rate

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

University of Minnesota Nano Center Standard Operating Procedure

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Beer s Law 29 January 2019

6 Acid Base Titration

The Effect of Alcohol on Biological Membranes

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Equilibrium and Ionic Strength Effects

Chemistry 213 INVESTIGATION OF NICKEL AND COPPER COORDINATION COMPLEXES LEARNING OBJECTIVES. The objectives of this experiment are:

Density of Aqueous Sodium Chloride Solutions

Transcription:

A OMPLEX IRO SALT & BEER S LAW LABORATORY OTEBOOK Objectives, hemical & Equipment Tables, and Procedures & Observations should all be entered into your EL. All spectra files should be attached in the Procedures & Observations section. A few pictures should also be attached that clearly show the solutions and equipment or instrumentation used. ITRODUTIO Transition metal cations, M +, react with charged or neutral ligands, L, to form complex ions. Many transition metal cations form octahedral complex ions with up to 6 ligands surrounding a central metal ion. The ligands act as Lewis bases, donating at least one pair of electrons to M + to form a coordinate covalent bond. (Ligands, therefore, coordinate or bind to M +.) Unidentate ligands (e.g., l -, O, H 3, - OH, -, etc.) create a bond with the transition metal cation by donating one electron pair, as shown to the right. Polydentate ligands donate 2 or more electron pairs creating two or more bonds with a transition metal center. These ligands are also known as chelates (from the Greek word for claw ) because a polydentate ligand clamps hold of the transition metal cation on at least two sides. Frequently, the binding of a chelating ligand to a transition metal cation creates a colored complex ion. helators such as oxalate (ox, 2 O 4 2- ), ethylenediamine (en, ), and ethylenediaminetetraacetate (EDTA) are used o 2+ The complex ion is coupled with counter ions to create a neutral ionic compound called a coordination compound. Often coordination extensively in environmental tests to detect trace amounts of metal cations because their reaction with many transition metals results in a dramatic color change. Typically a sample is treated with an excess of the ligand so that all binding sites on the transition metal are occupied, as shown on the right. K + K + K + 2 Fe 3+ K 3 Fe() 6 l - Fe 3+ o 2+ o(en) 2 l 2 l - 3-

compounds isolated in the solid form are found to contain waters of hydration (e.g., o(en) 2 l 2 i 4 O). In this experiment the complex ion that you will be working with is Fe(ox) 3-3. The oxalate ion (ox, 2 O 2 4 ), acts as a chelating bidentate ligand, binding to the iron (III) in a 3:1 ratio (3 oxalate ligands for each metal center). This complex ion creates a bright green solution when dissolved in water. The color observed is a result of the absorption of radiation from this visible part of the electromagnetic spectrum. (Typically, the color of light absorbed by a chemical complex is complementary to the color observed.) This absorption is a result of the excitation of valence electrons to higher energy electron orbitals of the Fe(ox) 3-3 complex. Therefore, the intensity of light at the absorbed wavelengths is reduced passing through solution; the amount of reduction is dependent on the concentration of the absorbing species and the distance the light travels through the solution (path length). This linear dependence is known as the Beer-Lambert Law (or Beer's Law): (1) A = ε l A = absorbance (no units) ε = molar absorptivity coefficient (units = L/mol-cm) = concentration of absorbing species (units = mol/l) l = path length (units = cm) Typically, the optical path length and molar absorptivity coefficient are held constant in an experiment, so the absorbance varies with concentration alone. A plot of absorbance vs. concentration is known as a Beer's Law Plot. In this experiment five standard solutions of the coordination compound, (H 4 ) 3 Fe(ox) 3 i3 O, will be created with volumetric glassware and their absorbance will be measured. A Beer s Law 3- Plot will be created with these absorbance, concentration data pairs. An unknown Fe(ox) 3 containing salt (a coordination compound with a different counterion) will then be massed and dissolved in a known volume of water. The absorbance of the unknown solution will be compared to the Beer s Law Plot to determine the concentration of Fe(ox) 3-3. The formula weight 3

can be determined from this data. Gravimetric analysis will also be performed to determine the mass percent of water and combined with the preceding data to determine the identity of the compound s counter ion. Before starting the experiment, the TA will randomly ask students to do a quick demonstration or talk-through of one of the following: 1) Go to the whiteboard and show how you calculated one of your 5 standard solutions from Part A 2) Before filling the cuvettes with a new solution, you need to prerinse it. What do you prerinse it with? 3) How to properly handle a cuvette (how to wipe it down, what to wipe it down with, how to hold it) 4) How to use a volumetric flask Read the technique documents and watch the videos on the course website to prepare for these demonstrations every week. Everyone will have presented at least one topic by the end of the quarter. The demonstrations should be short (>1 min) and will be graded. SAFETY PREAUTIOS Safety goggles and aprons must be worn at all times. Fe(ox) 3-3 containing compounds should be handled with gloves. Avoid inhalation and skin or eye contact. Wash affected areas thoroughly with cold water. When using a pipet, always use a pipet bulb to provide suction, never pipet by mouth. PROEDURES Part A: Prep of Standard Fe(ox) 3-3 Solutions Work in pairs. Design a plan to create 5 standard solutions with concentrations between 1.0 x 10-3 M and 7.5 x 10-3 M by dissolving solid (H 4 ) 3 Fe(ox) 3 i3 O in DI O using the volumetric glassware available in lab. Describe your procedure & show the calculations. ote: DI O is deionized water. A few special faucets in the lab will provide this water. Part B: alibrate & Blank the Visible Spectrometer 4

1. Obtain a visible spectrometer from the stockroom. Use the USB cable to connect the visible spectrometer to the LabQuest2. 2. alibrate the spectrometer by clicking. The calibration dialog box will display the message: Waiting.seconds for lamp to warm up. (The minimum warm up time is one minute.) ote: For best results, allow the spectrometer to warm up for at least three minutes. 3. reate a blank. What is a blank? What should be used as the blank? Wipe the outside of the blank with a kimwipe and insert the cuvette in the sample compartment. lick Finish alibration and then OK. 5

Part : Absorption Spectrum (Finding λ max ) 1. Measure the path length of the cuvette. What is this value? What does it represent? 2. Fill 5 labeled, prerinsed (with what?) cuvettes with the 5 different solutions created). 3. Wipe the outside of the cuvette (Why?) containing the solution of highest concentration, place in the cuvette holder, and click. lick once the data collection is complete. 4. Examine the graph and note the wavelength region of maximum absorbance. Remove the rainbow background spectrum by double clicking the rainbow background. lick and store latest run. What color of light is being absorbed by the sample solution? How is that color related to the color of the solution? Part D: Beer s Law Plot 1. Go to the screen, click on Sensors > Data ollection. hange Mode: Events w/ Entry, ame: oncentration, Units: molarity. lick OK. 2. Wipe the outside of the cuvette containing solution #1 with a kimwipe, place in the cuvette holder of the Spectrometer, click then click Keep. Type in your calculated value for the concentration of Fe(ox) 3-3. Repeat with all remaining solutions. 3. lick Stop once the absorbance values for all the standard solutions have been collected. Transfer the data to your EL, title the plot and label the axes. Part E: Absorbance Spectra of Unknown Work alone. 1. Weigh approximately ~0.125 g of the unknown and use it to create a 50 ml aqueous solution. Record the exact mass used. 2. Rinse a clean, empty cuvette with a few drops of the unknown solution and then fill the cuvette about 2/3 full with the solution. Record the absorbance for your unknown at λ max. When finished, pour all Fe 3+ containing solutions into the designated waste containers in the hood. Make sure to clear your email address and password of the LabQuest2 so others can t access your email account. Shutdown the LabQuest2 and not simply put it to sleep. To shutdown the LabQuest2: press the home key, select System! Shut Down! OK. 6

Part F. Gravimetric Analysis 1. Using a grease pen or labeling tape, put your name on a scintillation vial. Measure and record its mass. 2. Obtain ~0.100 g of unknown. Record the exact mass and appearance of the crystals. Place the container with crystals in the oven for at least one hour (make sure the oven is on i.e. it feels warm). arefully remove from the oven and place in a desiccator until cooled to room temperature and then record the mass. If the mass continues to decrease, place the container with crystals back in the desiccator. When finished, return the crystals to your TA. Post Lab Results & Discussion Answer each of the following questions on a Postlab page in your EL. reate a new heading for each question, so your TA can easily navigate through your answers. 1. reate a Beer s Law Plot with the data collected in Part D. 2. What is the value of the y-intercept on your Beer s Law plot? Provide possible explanations why the number is not zero. (Take into account sign.) 3. Using data from your Beer s Law Plot, what is the mean value of the molar extinction coefficient (also called molar absorptivity) for the Fe(ox) 3-3 ion? Find the mean value and standard deviation for ε. 4. Using the Beer s Law plot, find the concentration of in your unknown cuvette graphically (revise the plot created in #1) and mathematically (show all calculations). 5. Using the concentration calculated in #4 calculate the moles of Fe(ox) 3-3 ion present in the 50 ml of solution created in Part E and the mass % of Fe(ox) 3-3 ion in the unknown. 6. Using the data from the gravimetric analysis, determine the mass % of water in the unknown. 7. hallenge Question: The only other component to the unknown coordination compound is the counter cation that balances the 3- charge of the Fe(ox) 3-3 ion. With the information above, determine the counter cation s identity. (Hint: Find the atomic mass.) 8. Did any gross errors occur? Did you mess up? Did the equipment or instrumentation fail? If so, what was the effect on your results? 7