Pose tracking of magnetic objects

Similar documents
Pose tracking of magnetic objects

Terrain Navigation Using the Ambient Magnetic Field as a Map

System identification and sensor fusion in dynamical systems. Thomas Schön Division of Systems and Control, Uppsala University, Sweden.

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Calibration of a magnetometer in combination with inertial sensors

Sequential Monte Carlo in the machine learning toolbox

State Space Representation of Gaussian Processes

A Voyage to Africa by Mr Swift

Vehicle Motion Estimation Using an Infrared Camera an Industrial Paper

GAUSSIAN PROCESS REGRESSION

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Expectation Propagation in Dynamical Systems

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

1 / 31 Identification of nonlinear dynamic systems (guest lectures) Brussels, Belgium, June 8, 2015.

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

Ergodicity in data assimilation methods

Who are we? Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521: , /46

Independent Component Analysis and Unsupervised Learning

Autonomous Mobile Robot Design

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

State Space Gaussian Processes with Non-Gaussian Likelihoods

the robot in its current estimated position and orientation (also include a point at the reference point of the robot)

Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM

1 / 32 Summer school on Foundations and advances in stochastic filtering (FASF) Barcelona, Spain, June 22, 2015.

Inertial Odometry on Handheld Smartphones

1 Kalman Filter Introduction

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

arxiv: v2 [cs.sy] 13 Aug 2018

Data assimilation in high dimensions

FUNDAMENTAL FILTERING LIMITATIONS IN LINEAR NON-GAUSSIAN SYSTEMS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Reinforcement Learning with Reference Tracking Control in Continuous State Spaces

Reliability Monitoring Using Log Gaussian Process Regression

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Student-t Process as Alternative to Gaussian Processes Discussion

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Nonparametric Bayesian Methods (Gaussian Processes)

MODELLING TEMPORAL VARIATIONS BY POLYNOMIAL REGRESSION FOR CLASSIFICATION OF RADAR TRACKS

Lecture 9. Time series prediction

A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Non-linear singular value decomposition. Mariya Ishteva and Philippe Dreesen

Learning Gaussian Process Models from Uncertain Data

Overview of the Seminar Topic

The analog data assimilation: method, applications and implementation

Mathematical Methods for Data Analysis

Outline Lecture 2 2(32)

PREDICTING SOLAR GENERATION FROM WEATHER FORECASTS. Chenlin Wu Yuhan Lou

STEADY-STATE MEAN SQUARE PERFORMANCE OF A SPARSIFIED KERNEL LEAST MEAN SQUARE ALGORITHM.

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Fundamental concepts of functional data analysis

Efficient Complex Output Prediction

Mutual Information Based Data Selection in Gaussian Processes for People Tracking

Estimating Polynomial Structures from Radar Data

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th,

Lecture 5: GPs and Streaming regression

SPATIO-temporal Gaussian processes, or Gaussian fields,

Attitude Determination System of Small Satellite

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

A Study of Covariances within Basic and Extended Kalman Filters

9.2 Support Vector Machines 159

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

Using Tactile Feedback and Gaussian Process Regression in a Dynamic System to Learn New Motions

Multiscale Adaptive Sensor Systems

Magnetometer Modeling and Validation for Tracking Metallic Targets

Model Selection for Gaussian Processes

IMU-Laser Scanner Localization: Observability Analysis

Prediction of double gene knockout measurements

Neutron inverse kinetics via Gaussian Processes

CS 532: 3D Computer Vision 6 th Set of Notes

Quaternion based Extended Kalman Filter

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

Kernel Principal Component Analysis

Learning gradients: prescriptive models

Reservoir Computing and Echo State Networks

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

Scalable audio separation with light Kernel Additive Modelling

Probabilistic Reasoning in Deep Learning

Maximum likelihood calibration of a magnetometer using inertial sensors

Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting)

Magnetostatics and the vector potential

Learning deep dynamical models from image pixels

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

4. DATA ASSIMILATION FUNDAMENTALS

TSRT14: Sensor Fusion Lecture 9

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Kernel Machine Based Fourier Series

Transcription:

Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2

Short about me 2005-2010: Applied Physics and Electrical Engineering - International, Linköping University. 2007-2008: Exchange student, ETH Zürich, Swizerland 2010-2015 : PhD student in Automatic Control, Linköping University Spring 2014, Research visit, Imperial College, London, UK 2016- : Researcher at Department of Information Technology, Uppsala University 1 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

My thesis and my work at Uppsala Three areas: Magnetic tracking and mapping Extended target tracking Deep dynamical models for control Two areas: Constrained Gaussian processes Deep learning and system identification 2 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

My thesis and my work at Uppsala Three areas: Magnetic tracking and mapping Extended target tracking Deep dynamical models for control Two areas: Constrained Gaussian processes Deep learning and system identification 2 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetometer measurement models 1. Common use: Magnetometer provides orientation heading information. Assume that the magnetometer (almost) only measures the local (earth) magnetic field. 3 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetometer measurement models 1. Common use: Magnetometer provides orientation heading information. Assume that the magnetometer (almost) only measures the local (earth) magnetic field. 2. My use: Magnetometer(s) to provide position and orientation information. 3 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetometer measurement models 1. Common use: Magnetometer provides orientation heading information. Assume that the magnetometer (almost) only measures the local (earth) magnetic field. 2. My use: Magnetometer(s) to provide position and orientation information. Magnetic tracking: Measure the position and orientation of a known magnetic source. 3 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Sensor setup We use a sensor network with four three-axis magnetometers to determine the position and orientation of a magnet. 4 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic tracking Advantages Cheap sensors 5 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic tracking Advantages Cheap sensors Small sensors 5 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic tracking Advantages Cheap sensors Small sensors Low energy consumption 5 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic tracking Advantages Cheap sensors Small sensors Low energy consumption No weather dependency 5 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic tracking Advantages Cheap sensors Small sensors Low energy consumption No weather dependency Passive unit, requires no batteries 5 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Mathematical model - dipole field The magnetic field can be described with a dipole field. B(r) r m J(r ) B(r) = µ ( ) 0 4π r 5 3r r T r 2 I 3 m }{{} =C(r) m 1 2 r J(r )d 3 r 6 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Sensor model - single dipole The measurements can be described with a state-space model x k+1 = F k x k + G k w k, w k N (0, Q), y k,j = h j (x k ) + e k, e k N (0, R) Point target sensor model (one dipole) h j (x k ) = C(r k θ j )m k, x k = [r T k v T k m T k ω T k ]T C(r) = µ 0 4π r 5 (3rrT r 2 I 3 ), Measurement from a sensor network of magnetometers positioned at {θ j } J j=1. Degrees of freedom 3D position 2D orientation 7 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

z-coordinate [m] z-coordinate [m] Experiment 1 Trajectory 0.3 Trajectory 0.25 0.3 0.2 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0-0.05-0.1-0.2 0.2 0.1 0-0.1 0-0.1 0.1 y-coordinate [m] x-coordinate [m] 0.2-0.2 0-0.05-0.1-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2 y-coordinate [m] accuracy is 8 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment 2 - setup 9 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment 2 - results - position 0.3 0.2 Position [m] 0.1 0 0.1 0.2 20 25 30 35 40 45 50 Time [s] Black: Ground truth position. Color: Estimated position 10 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment - results - orientation 100 Orientation [degree] 0 100 200 20 25 30 35 40 45 50 Time [s] Black: Ground truth orientation. Color: Estimated orientation 11 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Application 1: 3D painting book 12 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Application 2: Digital water colors 13 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Application 3: Digital table hockey 14 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Application 4: Digital pathology 15 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Stylaero AB In February in this year a company was started around this technology The areas the company has so far one employee. Collaborations with gaming companied and industrial partners have been initiated. 16 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Thank you! 17 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetometer measurement models 1. Common use: Magnetometer provides orientation heading information. Assume that the magnetometer (almost) only measures the local (earth) magnetic field. 2. My use: Magnetometer(s) to provide position and orientation information. Magnetic tracking: Measure the position and orientation of a known magnetic source. Magnetic mapping: Build a map of the (indoor) magnetic field. 18 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Sensor model - multi-dipole The measurements can be described with a state-space model x k+1 = F k x k + G k w k, w k N (0, Q), y k,j = h j (x k ) + e k, e k N (0, R) Extended target sensor model (a structure of dipoles) L h j (x k ) = C(r k + R k (q k )s l θ j )m l R k (q k )b l, l=1 x k = [r T k v T k q T k ω T k ]T y z x s 1 s2 b 1 b 2 Degrees of freedom 3D position 3D orientation 19 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic mapping Build a map of the indoor magnetic field. This map can be used for localization. We want a statistical model of the magnetic field - Gaussian processes! 20 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian processes Gaussian processes can be seed as a distribution over functions f(u) GP ( µ(u), K(u, u ) ), Mean function Covariance function It is a generalization of the multivariate Gaussian distribution f(u 1 ) µ(u 1 ). N (µ, K), where µ =., f(u N ) µ(u N ) K(u 1, u 1 ) K(u 1, u N ) K =... K(u N, u 1 ) K(u N, u N ) 21 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process regression Objective: Estimate f(u) from noisy observations y k = f(u k ) + e k 1.5 1 0.5 f(u) 0 0.5 1 1.5 3 2 1 0 u 1 2 3 22 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process regression Objective: Estimate f(u) from noisy observations y k = f(u k ) + e k 1.5 1 0.5 f(u) 0 0.5 1 1.5 3 2 1 0 u 1 2 3 22 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process regression Objective: Estimate f(u) from noisy observations y k = f(u k ) + e k 1.5 1 0.5 f(u) 0 0.5 1 1.5 3 2 1 0 u 1 2 3 22 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process regression Objective: Estimate f(u) from noisy observations y k = f(u k ) + e k 1.5 1 0.5 f(u) 0 0.5 1 1.5 3 2 1 0 u 1 2 3 22 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process regression Objective: Estimate f(u) from noisy observations y k = f(u k ) + e k 1.5 1 0.5 f(u) 0 0.5 1 1.5 3 2 1 0 u 1 2 3 22 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Modeling the magnetic field The magnetic field H is curl-free, i.e. H = 0 [1] y k = f(x k ) + ε k f(x) GP(0, σ 2 const.i 3 + K curl (x, x )) [1] Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson, Modeling magnetic fields using Gaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013. 23 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Modeling the magnetic field The magnetic field H is curl-free, i.e. H = 0 [1] y k = f(x k ) + ε k f(x) GP(0, σ 2 const.i 3 + K curl (x, x )) If a vector-field is curl-free, a scalar potential ϕ exists H = ϕ [2] y k = ϕ(x) x=xi + ε k ϕ(x) GP ( 0, k lin. (x, x ) + k SE (x, x ) ) [1] Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson, Modeling magnetic fields using Gaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013. [2] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön and Simo Särkkä, Modeling and interpolation of the ambient magnetic field by Gaussian processes IEEE Transactions on Robotics, 2017. Accepted. 23 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment Build a map of the indoor magnetic field using Gaussian processes. 24 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment Build a map of the indoor magnetic field using Gaussian processes. Optical marker Smartphone Invensense IMU Trivisio IMU DiddyBorg robot board 24 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Experiment Build a map of the indoor magnetic field using Gaussian processes. https://www.youtube.com/watch?v=enlmiuqpvjo 24 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Reduced-Rank GPR Hilbert-space approximation of the covariance operator in terms of an eigenfunction expansion of the Laplace operator in a compact subset of R d. Assume that the measurements are confined to a certain domain. Approximate the covariance using the spectral density and a number of eigenvalues and eigenfunctions. For d = 1: m k(x, x ) S(λ j )φ j (x)φ j (x ) j=1 ( ) φ j (x) = 1 πnj (x+l) L sin 2L, λ j = πj 2L, Converges to the true GP when the number of basis functions and the size of the domain goes to infinity. Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä (http://arxiv.org/pdf/1401.5508v1.pdf) 25 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Reduced-Rank GPR Consequences for our problem: Original formulation: 50 or 100 Hz magnetometer data (in 3D) Size of the matrix to invert grows very quickly with each additional second of data Downsampling needed and large buildings become infeasible Reduced-rank formulation: Possible to use all data Size of the problem does not grow for longer data sets 26 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Sequential updating Initialize µ 0 = 0 and Σ 0 = Λ θ (from the GP prior). For each new observation i = 1, 2,..., n update the estimate according to S i = Φ i Σ i 1 [ Φ i ] T + σ 2 noise I 3, K i = Σ i 1 [ Φ i ] T S 1 i, µ i = µ i 1 + K i (y i Φ i µ i 1 ), Σ i = Σ i 1 K i S i K T i. 27 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Spatio-temporal modeling Model the scalar potential magnetic field instead as ϕ(x, t) GP(0, κ lin. (x, x ) + κ SE (x, x )κ exp (t, t )), with ( κ exp (t, t ) = exp t ) t. l time The scalar potential can then sequentially be estimated by adding a time update to the measurement update from before as µ i = A i 1 µ i 1, Σ i = A i 1 Σ i 1 A T i 1 + Q i 1. 28 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? Use multiple dipoles? 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? Use multiple dipoles? Use a continuum of dipoles! 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? Use multiple dipoles? Use a continuum of dipoles! 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? Use multiple dipoles? Use a continuum of dipoles! Spatial correlation 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Problem formulation We want to find a magnetic map of this object! How should the map be modeled? Use the dipole model? Use multiple dipoles? Use a continuum of dipoles! Spatial correlation 29 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Real world experiment Measurements have been collected with a magnetometer An optical reference system (Vicon) has been used for determining the position and orientation of the sensor 1.2 1 0.8 0.6 x axis [m] 0.4 0.2 0 0.2 0.4 0.6 1.5 1 0.5 y axis [m] 0 The magnetic environment Training data 30 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Real world experiment Measurements have been collected with a magnetometer An optical reference system (Vicon) has been used for determining the position and orientation of the sensor The magnetic environment Estimated magnetic content 30 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Modeling the magnetic field The magnetic field H is curl-free, i.e. H = 0 [1] y k = f(x k ) + ε k f(x) GP(0, σ 2 const.i 3 + K curl (x, x )) [1] Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson, Modeling magnetic fields using Gaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013. 31 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Modeling the magnetic field The magnetic field H is curl-free, i.e. H = 0 [1] y k = f(x k ) + ε k f(x) GP(0, σ 2 const.i 3 + K curl (x, x )) If a vector-field is curl-free, a scalar potential ϕ exists H = ϕ [2] y k = ϕ(x) x=xi + ε k ϕ(x) GP ( 0, k lin. (x, x ) + k SE (x, x ) ) [1] Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson, Modeling magnetic fields using Gaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013. [2] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön and Simo Särkkä, Modeling and interpolation of the ambient magnetic field by Gaussian processes ArXiv e-prints, September 2015. arxiv:1509.04634. 31 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Building magnetic field maps (2) x-component Encode physical knowledge in the kernel. 20 y-component 0 20 z-component 40 32 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Building magnetic field maps (2) x-component Encode physical knowledge in the kernel. Use reduced-rank GP regression based on the method from [1]. 20 0 20 y-component z-component 40 [1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression A. Solin, S. Särkkä. 32 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Building magnetic field maps (2) x-component Encode physical knowledge in the kernel. Use reduced-rank GP regression based on the method from [1]. Use a Kalman filter formulation to allow for sequential updating. 20 0 20 y-component z-component 40 [1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression A. Solin, S. Särkkä. 32 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Building magnetic field maps (2) x-component Encode physical knowledge in the kernel. Use reduced-rank GP regression based on the method from [1]. Use a Kalman filter formulation to allow for sequential updating. Use a spatio-temporal model to allow for changes in the magnetic field. 20 0 20 40 y-component z-component [1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression A. Solin, S. Särkkä. 32 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Magnetic fields We use a slightly different version of the magnetostatic equations B = 0, H = 0 1 µ 0 B H = M, Example - = 1 µ 0 B - H = M 33 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process + magnetic fields The animation illustrated regression for one scalar function f : R R 34 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process + magnetic fields The animation illustrated regression for one scalar function f : R R We want to learn three different vector fields f : R 3 R 3 In addition, these fields should obey 34 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process + magnetic fields The animation illustrated regression for one scalar function f : R R We want to learn three different vector fields f : R 3 R 3 In addition, these fields should obey B = 0 (divergence free) H = 0 (curl free) 34 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process + magnetic fields The animation illustrated regression for one scalar function f : R R We want to learn three different vector fields f : R 3 R 3 In addition, these fields should obey B = 0 (divergence free) There exist covariance H = 0 (curl free) functions for this! 34 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Gaussian process + magnetic fields The animation illustrated regression for one scalar function f : R R We want to learn three different vector fields f : R 3 R 3 In addition, these fields should obey B = 0 (divergence free) There exist covariance H = 0 (curl free) functions for this! 1 µ 0 B H = M 34 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2

Simulation Predictions Training data Divergence free Curl free - = 1 µ 0 B - H = M 35 / 17 niklas.wahlstrom@it.uu.se Seminar Vi2