Research Article Trend of the Yellowstone Grizzly Bear Population

Similar documents
Background. North Cascades Ecosystem Grizzly Bear Restoration Plan/ Environmental Impact Statement. Steve Rochetta

Research Article A Scheme for Evaluating Feral Horse Management Strategies

Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability INTRODUCTION METHODS

HABITAT EFFECTIVENESS AND SECURITY AREA ANALYSES

Demography and Genetic Structure of the NCDE Grizzly Bear Population. Kate Kendall US Geological Survey Libby, MT Jan 26, 2011

YELLOWSTONE GRIZZLY BEAR INVESTIGATIONS

Research Article The Laplace Likelihood Ratio Test for Heteroscedasticity

Bear Conservation. Recolonization. Reintroduction IDENTIFYING POTENTIAL COLONIZATION PATTERNS FOR REINTRODUCED BLACK BEAR POPULATIONS

Comparing male densities and fertilization rates as potential Allee effects in Alaskan and Canadian Ursus maritimus populations

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

MODELING SURVIVAL: APPLICATION OF THE ANDERSEN GILL MODEL TO YELLOWSTONE GRIZZLY BEARS

Exxon Valdez Oil Spill Restoration Project Annual Report

BOOTSTRAPPING WITH MODELS FOR COUNT DATA

Forest Service Suppression Cost Forecasts and Simulation Forecast for Fiscal Year 2010 Spring Update

Bombing for Biodiversity in the United States: Response to Zentelis & Lindenmayer 2015

Bootstrapping Dependent Data in Ecology

Spatio-temporal dynamics of Marbled Murrelet hotspots during nesting in nearshore waters along the Washington to California coast

RESULTS METHODS. Schwartz et al. Demographics of the Yellowstone Grizzly 57

Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures

Spatial Point Pattern Analysis

Carnivore re-colonisation: reality, possibility and a non-equilibrium century for grizzly bears in the Southern Yellowstone Ecosystem

RELATIONSHIPS BETWEEN THE AMERICAN BROWN BEAR POPULATION AND THE BIGFOOT PHENOMENON

IUCN Red List Process. Cormack Gates Keith Aune

REVISION: POPULATION ECOLOGY 01 OCTOBER 2014

Ecography. Supplementary material

LOGISTIC REGRESSION Joseph M. Hilbe

Population modeling of marine mammal populations

Impacts of Changes in Extreme Weather and Climate on Wild Plants and Animals. Camille Parmesan Integrative Biology University of Texas at Austin

Visitor Perceptions of Roadside Bear Viewing and Management in Yellowstone National Park

GRIZZLY BEAR DENNING AND POTENTIAL CONFLICT AREAS IN THE GREATER YELLOWSTONECOSYSTEM

A nonparametric two-sample wald test of equality of variances

Why do populations go extinct?

Poincaré Plots for Residual Analysis

Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables

Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs

A Signed-Rank Test Based on the Score Function

REVIEW OF AERIAL SURVEY ESTIMATES FOR RINGED SEALS (PHOCA HISPIDA) IN WESTERN HUDSON BAY

Research Article Stabilizing of Subspaces Based on DPGA and Chaos Genetic Algorithm for Optimizing State Feedback Controller

Predicting wildfire ignitions, escapes, and large fire activity using Predictive Service s 7-Day Fire Potential Outlook in the western USA

Research Article Improved Estimators of the Mean of a Normal Distribution with a Known Coefficient of Variation

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

APPENDIX E: Estimating diversity profile based on the proposed RAD estimator (for abundance data).

The effect of emigration and immigration on the dynamics of a discrete-generation population

2013 Aerial Moose Survey Final Results

Research Article Representing Smoothed Spectrum Estimate with the Cauchy Integral

Research Article Some Improved Multivariate-Ratio-Type Estimators Using Geometric and Harmonic Means in Stratified Random Sampling

Ecosystem Management General Goals Subgoals

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

A New Mathematical Approach for. Rabies Endemy

PAA 2016 extended abstract. Not for distribution.

Stability Analyses of the 50/50 Sex Ratio Using Lattice Simulation

Behaviour of simple population models under ecological processes

Research Article Remarks on Asymptotic Centers and Fixed Points

Supplement A. The relationship of the proportion of populations that replaced themselves

Generalized Linear Models (GLZ)

The extent and location of habitat biophysically suitable for grizzly bears in the Yellowstone region

SUPPLEMENTARY INFORMATION

Population Organizational Systems and Regulatory Mechanisms of a Forest Carnivore (Pine Martens) in Grand Teton National Park

Research Article Hidden Periodicity and Chaos in the Sequence of Prime Numbers

Bryan F.J. Manly and Andrew Merrill Western EcoSystems Technology Inc. Laramie and Cheyenne, Wyoming. Contents. 1. Introduction...

Introduction to Part III Examining wildlife distributions and abundance using boat surveys

STATUS OF THE YELLOWSTONE GRIZZLY BEAR POPULATION: HAS IT RECOVERED, SHOULD IT BE DELISTED?

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion

Testing Goodness Of Fit Of The Geometric Distribution: An Application To Human Fecundability Data

Some animals are adapted to survive in very cold conditions such as the Arctic.

population size at time t, then in continuous time this assumption translates into the equation for exponential growth dn dt = rn N(0)

Biometrics Unit and Surveys. North Metro Area Office C West Broadway Forest Lake, Minnesota (651)

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

Dynamic and Succession of Ecosystems

Research Article Bessel Equation in the Semiunbounded Interval x [x 0, ]: Solving in the Neighbourhood of an Irregular Singular Point

Biomes and Ecosystems

John Erb, Minnesota Department of Natural Resources, Forest Wildlife Research Group

Metric Analysis Approach for Interpolation and Forecasting of Time Processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Lee A. Breakiron U.S. Naval Observatory Washington, DC ABSTRACT

Research Article L-Stable Derivative-Free Error-Corrected Trapezoidal Rule for Burgers Equation with Inconsistent Initial and Boundary Conditions

Putative Canada Lynx (Lynx canadensis) Movements across I-70 in Colorado

Resolving Autocorrelation Bias in the Determination of the Extinction Efficiency of Fugitive Dust from Cattle Feedyards

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Prediction of Snow Water Equivalent in the Snake River Basin

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 16 Introduction

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology

Chapter 4 Population Ecology

Commentary on Holmes et al. (2007): resolving the debate on when extinction risk is predictable

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

Comment: Some Statistical Concerns on Dimensional Analysis

Allee effects in stochastic populations

USING HYPERSPECTRAL IMAGERY

Econometric Forecasting Overview

FW662 Lecture 9 Immigration and Emigration 1. Lecture 9. Role of immigration and emigration in populations.

Graphical Presentation of a Nonparametric Regression with Bootstrapped Confidence Intervals

Competition-induced starvation drives large-scale population cycles in Antarctic krill

Carl N. Morris. University of Texas

8STATISTICAL ANALYSIS OF HIGH EXPLOSIVE DETONATION DATA. Beckman, Fernandez, Ramsay, and Wendelberger DRAFT 5/10/98 1.

Using Big Interagency Databases to Identify Climate Refugia for Idaho s Species of Concern

Weather and Climate in Canada. October 2 nd, 2017

Population Questions. 1. Which of the following conditions is most likely to lead to an increase in a field mouse population?

13.1. Ecologists Study Relationships. Ecologists study environments at different levels of organization.

GRIZZLY BEAR HABITAT EFFECTIVENESS MODEL FOR BANFF, YOHO, AND KOOTENAY NATIONAL PARKS, CANADA

Transcription:

International Ecology Volume 2010, Article ID 924197, 5 pages doi:10.1155/2010/924197 Research Article Trend of the Yellowstone Grizzly Bear Population L. L. Eberhardt 1 andj.m.breiwick 2 1 2528 W. Klamath Avenue, Kennewick, WA 99336, USA 2 National Marine Fisheries Service, National Marine Mammal Laboratory, 7600 Sand Point Way NE, Bldg. 4, Seattle, WA 98115, USA Correspondence should be addressed to L. L. Eberhardt, leberhardt@aol.com Received 4 March 2010; Accepted 8 April 2010 Academic Editor: Mats Olsson Copyright 2010 L. L. Eberhardt and J. M. Breiwick. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Yellowstone s grizzlies (Ursus arctos) have been studied for more than 40 years. Radiotelemetry has been used to obtain estimates of the rate of increase of the population, with results reported by Schwartz et al. (2006). Counts of females with cubs-of-the-year unduplicated also provide an index of abundance and are the primary subject of this report. An exponential model was fitted to n = 24 such counts, using nonlinear leastsquares. Estimates of the rate of increase, r, were about 0.053. 95% confidence intervals, were obtained by several different methods, and all had lower limits substantially above zero, indicating that the population has been increasing steadily, in contrast to the results of Schwartz et al. (2006), which could not exclude a decreasing population. The grizzly data have been repeatedly mis-used in current literature for reasons explained here. 1. Introduction Yellowstone s grizzlies have been studied extensively for over 40 years. A recent monograph [1] provided a detailed analysis of much of the accumulated data. Two methods have been used to estimate trends of the population. One, the unduplicated counts of females with cubs-of-the-year, was developed by Dr. R. R. Knight and has been maintained since 1973. The second approach uses radiotelemetry data and was pioneered by Craighead [2]. The unduplicated counts along with some earlier observations were converted to an index described as a minimum population estimate [3]. That index used a three-year moving average to smooth the annual numbers of adult female bears and a calculated proportion of adult females in the population of 0.274. A long series of study committees [4] continued use of the index because a minimum population estimate appeared to be something readily understood by administrators and the public. A weakness in the minimum population index is the presence of a strong serial correlation, induced by the fact that each annual estimate contains the counts from 2 other years. Difficulties caused by serial correlation have been assessed by Watt [5, 6], Chapman[7], and Freckleton et al. [8]. Eberhardt [9] indicated the sizable degree of correlation thus induced when the underlying data are constructed only from random numbers and showed that a correlation of 0.707 could be induced in analysis of two independent sets of random numbers. Royama [10] reported the same result. The minimum population index is not used here, and the Durbin-Watson test [11] does not show evidence of serial correlation in the data used here. An alternative approach using radiotelemetry was applied by Eberhardt, et al. [12] using an approximation to Lotka s equation proposed by Eberhardt [13]. That analysis yielded an estimate of λ of 1.046 with bootstrap 95% confidence limits of 1.00 to 1.09. That study depended on bears caught and marked in a set of backcountry traps, located away from centers of human activity. The major, and essentially the only, cause of adult grizzly mortality comes from conflicts with humans. When such conflicts arise, efforts are made to capture and move bears. Much experience has shown that bears involved in such a situation have a low survival rate. Consequently, bears first captured in conflict situations were not used in the analysis, but bears firstcaptured in the so-called research trapping continued to be used in the analysis after they were involved in conflicts with humans. Subsequently, Pease and Mattson [14] proposed

2 International Ecology that there are wary and unwary bears so that the unwary bears first-captured in conflict situations should be included in the telemetry sample. This, of course, reduced the lower confidence limit on population trend below 1.0. Theissuesthusinvolvedhavebeenextensivelyexploredin the monograph by Schwartz et al. [1] and need not be further considered here. However, probability distributions generated by stochastic simulations of Yellowstone grizzly numbers [15] have lower limits below λ = 1.00, thus not excluding the prospect that the population has not increased. Again, these results have been amply examined in the monograph of Schwartz et al. [1]. The purpose of the present study is to utilize the original unduplicated counts as an independent measure of population trend and to correct some erroneous uses of the data. 2. Study Area The study area constitutes Yellowstone and Grand Teton National Parks, 6 adjacent National Forests plus some state and private lands, and totals about 34,500 km 2.Itis known as The Greater Yellowstone Ecosystem (GYE). The GYE constitutes the Yellowstone Plateau, and surrounding mountain ranges above 1500 m. Long cold winters and short summers characterize the climate. Low elevations are covered by grasslands or shrub steppes. Douglas fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) are the dominant tree species. A detailed description of the study area is available in Schwartz et al. [1]. 3. Material and Methods The model used here is the exponential N(t) = ae rt (1) r is the annual rate of increase and t is time in years, while a denotes an initial value. This equation was fit using nonlinear least-squares [16], as implemented in the R-language [17], and ordinary least-squares regression after a logtransformation of the trend index. Utility of the logtransformation was demonstrated by Eberhardt [13]. The data were also examined using a smoothing technique, lowess [18, 19]. Confidence intervals on r were obtained by bootstrapping [19, 20] for the nonlinear model and from the usual linear regression model for the log-transformed data. Several different confidence intervals were calculated in the R-language program boot.ci, as expounded by [20,chapter5] A generalized linear model (GLM) [21] with Poisson errors was also fit to the data using program glm in the R-language. All bootstraps used 5,000 calculations. The Durbin-Watson test [11] was used to test for serial correlation. This test depends on the fact that the squared difference between successive deviations can be used to approximate the variance of the deviations if the pattern of deviations is random. The test is (eu e d u 1 ) 2 =, (2) e 2 u Count 50 40 30 20 10 Females with cubs 1975 1980 1985 1990 1995 2000 2005 (years) Figure 1: Plot of unduplicated data with lowess smoothed line. where the observations are deviations from a fitted model. Values of d lie between 0 and 4, with zero correlation at d = 2. Bias can be estimated in bootstrapping, using the following: Bias B = θ tf, (3) where θ is the mean of the bootstraps and tf is the original estimate [19]. Data used here on the unduplicated females with cubs in the GYE are those given in Table 4 of the 2006 Annual Report of the Interagency Grizzly Bear Study Team, C. C. Schwartz, M. A. Haroldson, and K. West, Editors (available at http://www.nrmsc.usgs.gov/research/igbst-home.htm). 4. Results The unduplicated data set was initially assessed by the lowess program, which is essentially a data smoothing program that calculates values from a weighted linear regression of a subset of points adjacent to the current location. It was used to produce Figure 1. The J-shaped nature of the plot is in consequence that measures to protect and enhance grizzly populations in Yellowstone did not take effect until about 1983 [1, 3]. All subsequent analyses given here use the data from 1983 onwards. Fits of the data from 1983 onwards using nonlinear least-squares with (1) appear in Figure 2. The estimate of rate of increase (r) for the exponential fit (1) was 0.052 with a standard error of 0.0071. The Durbin- Watson test when applied to the exponential fit yielded a D-statistic of 2.32, a nonsignificant result, indicating no evidence of serial correlation. Bias calculated from (3) was negligible in all instances. Results of the various analyses appear in Table 1. 5. Discussion The fact that the difference between r from the exponential fit and 0 is over 7 times the standard error provides strong evidence that it is significantly different from zero. This result is clearly supported by the several confidence interval calculations (Table 1), so it seems clear that the unduplicated

International Ecology 3 Table 1: Estimates of rate of change (r), bias (3), and 95% confidence intervals for various methods of estimation using the exponential model. 95% Confidence METHOD Estimate of r Bias equation (4) Interval on r Lower Upper Regression (log transformed counts) 0.0526 0.0422 0.07 Bootstrap (log transformed counts) 0.0563 2.00E-04 0.041 0.071 Basic bootstrap c.i. 0.04 0.071 Percentile method c.i. 0.042 0.072 BCA method c.i. 0.041 0.072 Nonlinear Least-squares exponential model 0.0526 0.039 0.066 Bootstrap of Nonlinear L.S. Model 0.0526 0.0007 0.037 0.066 Basic bootstrap c.i. 0.036 0.066 Percentile method c.i. 0.039 0.069 BCA method c.i. 0.036 0.066 Generalized linear model (Poisson errors) 0.054 0.043 0.065 Females with cubs Chao2 values 50 40 50 Count 30 20 Estimate 40 30 10 20 1985 1990 1995 2000 2005 (years) Figure 2: Plot of unduplicated data with fitted exponential function. 1985 1990 1995 2000 2005 (years) Figure 3: Plot of Chao2 data with fitted exponential function. counts show a significant upwards trend. Two different models are considered, one the linear model with additive errors resulting from the logarithmic transformation of the data and the second a multiplicative error structure for the nonlinear least-squares fit to the exponential model. Confidence intervals from both models demonstrate that the rate of increase, r, is substantially greater than zero. We use r, the intrinsic rate of increase here, rather than λ = exp(r)as calculated from reproductive and survival rates, but, for small r, the difference is trivial. The data indicate that the GYE bear population does not yet show signs of approaching an asymptote. This is a bit surprising, inasmuch as Schwartz et al. [1]. detected signs of decreasing survival in the population surrounding the primary inhabited area. One possible explanation is that the expansion zone, being crudely an annulus of substantial area, can still provide a substantial increment to the population in spite of having lower overall survival rates. Clearly, the population will ultimately level off, and its numbers may then be fit with a logistic curve. We have favored a generalized logistic model in which the rate of increase remains high until the asymptote (K) is approached [22], but believe the present data set is too variable for that model to be useful until the population begins to approach an asymptotic value. Harris et al. [15]. proposed use of the Chao2 estimator [23] to estimate the total number of females with cubs present from the estimated number observed [15, page 17]. Using their estimates [24, Table4]wefitted(1) by nonlinear least-squares giving the results shown in Figure 3. This fit had a residual standard error of 8.36 as contrasted to a value of 6.11 from the data of Figure 2, suggesting that the Chao2 estimator gives substantially more variable results than using the unadjusted estimates of females with cubs of the year.

4 International Ecology Conducting live-trapping, marking and radiotelemetry operations on grizzlies are very expensive operations. Hence, the main lesson from the present study is that index studies should also be attempted as a check on results. Transforming observed index data with the Chao2 estimator produced slightly more variable results, so the method may not be useful unless some improvements are possible. The radiotelemetry results provide essential data for management so should also be conducted whenever possible. The time span of the reported data (approaching 40 years) has led to its use in a long list of applications [25 32]. All of these ignore the fact that the initial data in the series were constructed from different data sources not compatible with the 1973 development of the unduplicated index. As noted above, the population was evidently decreasing until about 1983. This lead to various forecasts of ultimate extinction [27, 28] a somewhat decreased risk [31,Table 1],a lower limit on lambda of 0.99 [26], and a very small probability of extinction [29]. Staudenmayer and Buonaccorsi [31] indicate that some of their estimates indicate a rate of increase less than zero. They also used the data to estimate extinction rates. Brook and Bradshaw [25] used the data to study densitydependence and did not consider extinction of the population. Acknowledgments The senior author is grateful to Dr. Richard Knight for the opportunity to work on data for the Yellowstone grizzly bears for over 20 years and to Bonnie M. Blanchard for her continual and cheerful efforts at tabulation and analysis of the data. Dave Stradley of the Gallatin Flying Service provided expert piloting for many hours of looking for bears. Support from the Marine Mammal Commission and the National Marine Mammal Laboratory is acknowledged. References [1] C. C. Schwartz, M. A. Haroldson, G. C. White, et al., Temporal, Spatial and Environmental Influences on the Demographics of Grizzly Bears in the Greater Yellowstone Ecosystem, Wildlife Monographs, Washington, DC, USA, 1992. [2] J. J. Craighead, J. Varney, and F. C. Craighead, A Population Analysis of the Yellowstone Grizzly Bears, Montana Forest and Conservation Experiment Station, Bulletin 40, School of Forestry, University of Montana, Missoula, Mont, USA, 1974. [3] L. L. Eberhardt and R. R. Knight, How many grizzlies in Yellowstone? Wildlife Management, vol. 60, no. 2, pp. 416 421, 1996. [4] C. Servheen and R. Schoemaker, Delisting the Yellowstone grizzly bear, Yellowstone Science, vol. 16, pp. 25 29, 2008. [5] K. E. F. Watt, Density dependence in population fluctuations, Canadian Entomologist, vol. 96, pp. 1147 1148, 1964. [6] K. E. F. Watt, Ecology and Resource Management, McGraw-Hill, New York, NY, USA, 1968. [7] D. G. Chapman, Statistical problems in dynamics of exploited fisheries populations, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkley, Calif, USA, 1961. [8] R. P. Freckleton, A. R. Watkinson, R. E. Green, and W. J. Sutherland, Census error and the detection of density dependence, Animal Ecology, vol. 75, no. 4, pp. 832 851, 2006. [9] L. L. Eberhardt, Correlation, regression, and density dependence, Ecology, vol. 51, pp. 306 310, 1970. [10] T. Royama, Analytical Population Dynamics, Chapman and Hall, London, UK, 1992. [11] N. R. Draper and H. Smith, Applied Regression Analysis, John Wiley & Sons, New York, NY, USA, 1998. [12] L. L. Eberhardt, B. M. Blanchard, and R. R. Knight, Population trend of the Yellowstone grizzly bear as estimated from reproductive and survival rates, Canadian Zoology, vol. 72, no. 2, pp. 360 363, 1994. [13] L. L. Eberhardt, Assessing the dynamics of wild populations, Wildlife Management, vol. 49, pp. 997 1012, 1985. [14] C. M. Pease and D. J. Mattson, Demography of the Yellowstone grizzly bears, Ecology, vol. 80, no. 3, pp. 957 975, 1999. [15] R. B. Harris, C. C. Schwartz, M. A. Haroldson, and G. C. White, Trajectory of the yellowstone grizzly bear population under alternative survival rates, in Temporal, Spatial and Environmental Influences on the Demographics of Grizzly Bears in the Greater Yellowstone Ecosystem, C.C.Schwartz,M.A. Haroldson, G. C. White, et al., Eds., pp. 44 55, Wildlife Monographs, Washington, DC, USA, 2006. [16] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York, NY, USA, 1988. [17] R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2004, http://www.r-project.org. [18] W. S. Cleveland, Robust locally-weighted regression and smoothing scatterplots, the American Statistical Association, vol. 74, no. 2, pp. 829 836, 1979. [19] B. Efron and R. J. Tibishirani, An Introduction to the Bootstrap, Chapman and Hall, New York, NY, USA, 1993. [20] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Application, Cambridge University Press, New York, NY, USA, 1997. [21] P. McCullagh and J. A. Nelder, Generalized Linear Models, Chapman and Hall, New York, NY, USA, 2nd edition, 1989. [22] L. L. Eberhardt, J. M. Breiwick, and D. P. DeMaster, Analyzing population growth curves, Oikos, vol. 117, no. 8, pp. 1240 1246, 2008. [23] R. M. Wilson and M. F. Collins, Capture-recapture estimation with samples of one using frequency data, Biometrika, vol. 79, pp. 543 553, 1992. [24] R. B. Harris, G. C. White, C. C. Schwartz, and M. A. Haroldson, Population growth of Yellowstone grizzly bears: uncertainty and future monitoring, Ursus, vol. 18, no. 2, pp. 168 178, 2007. [25] B. W. Brook and C. J. A. Bradshaw, Strength of evidence for density dependence in abundance time series of 1198 species, Ecology, vol. 87, no. 6, pp. 1445 1451, 2006. [26] J. P. Buonaccorsi and J. Staudenmayer, Statistical methods to correct for observation error in a density-independent population model, Ecological Monographs, vol. 79, no. 2, pp. 299 324, 2009. [27] B. Dennis, P. L. Munholland, and J. M. Scott, Estimation of growth and extinction parameters for endangered species, Ecological Monographs, vol. 61, no. 2, pp. 115 143, 1991.

International Ecology 5 [28] B. Dennis and M. L. Taper, Density dependence in time series observations of natural populations: estimation and testing, Ecological Monographs, vol. 64, no. 2, pp. 205 224, 1994. [29] S. T. Lindley, Estimation of population growth and extinction parameters from noisy data, Ecological Applications, vol. 13, no. 3, pp. 806 813, 2003. [30] W. F. Morris and D. F. Doak, Quantitative Conservation Biology: Theory and Practice of Population Variability Analysis, Sinauer Associates, Sunderland, Mass, USA, 2002. [31] J. Staudenmayer and J. P. Buonaccorsi, Measurement error in a random walk model with applications to population dynamics, Biometrics, vol. 62, no. 4, pp. 1178 1189, 2006. [32] D. F. Staples, M. L. Taper, and B. Dennis, Estimating population trend and process variation for PVA in the presence of sampling error, Ecology, vol. 85, no. 4, pp. 923 929, 2004.

Waste Management The Scientific World Journal International Ecology Environmental and Public Health Scientifica Ecosystems International Oceanography Submit your manuscripts at International Marine Biology Atmospheric Sciences International Biodiversity International Forestry Research Forestry Geological Research Climatology Environmental Chemistry Ecology Soil Science Applied & Environmental Soil Science Biodiversity