Dusty star-forming galaxies at high redshift (part 7)

Similar documents
Dusty star-forming galaxies at high redshift (part 5)

Dusty star-forming galaxies at high redshift (part 5)

Towards a Complete Census of Extreme Starbursts in the Early Universe

Star Formation Indicators

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

High Redshift Universe

High-redshift galaxies

Gas Masses and Gas Fractions: Applications of the Kennicutt- Schmidt Law at High Redshift

The History of Star Formation. Mark Dickinson, NOAO

Stellar Populations: Resolved vs. unresolved

A Monster at any other Epoch:

Dust. The four letter word in astrophysics. Interstellar Emission

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Multi-wavelength ISM diagnostics in high redshift galaxies

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay)

arxiv: v1 [astro-ph.co] 27 May 2009

Introduction and Motivation

Spectral Energy Distributions as probes of star formation in the distant Universe

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Gas Accretion & Outflows from Redshift z~1 Galaxies

How to measure star formation rates in galaxies?

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

The main sequence from stars to galaxies pc kpc Mpc. Questions

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED

UV/optical spectroscopy of Submilliimeter Galaxies

Interstellar Dust and Extinction

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

X-ray emission from star-forming galaxies

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

The Far-Infrared Radio Correlation in Galaxies at High Redshifts

The ALMA z=4 Survey (AR4S)

THE GAS MASS AND STAR FORMATION RATE

arxiv:astro-ph/ v1 18 Apr 2006

Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

Caitlin Casey, Jacqueline Hodge, Mark Lacy

Chapter 10: Unresolved Stellar Populations

Dominik A. Riechers Cornell University

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Luminous Infrared Galaxies

WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA

Stellar populations of quasar host galaxies

A prelude to SKA. High-resolution mapping of the ujy radio population. Ian Smail ICC, Durham University Tom Muxlow, JBCA, University of Manchester

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY

Understanding Submillimetre Galaxies: Lessons from Low Redshifts

IRS Spectroscopy of z~2 Galaxies

Probing the Chemistry of Luminous IR Galaxies

Wagg ea. [CII] in ALMA SV 20min, 16 ants. 334GHz. SMA 20hrs

BAT AGN prefer circumnuclear star formation

GRB Host Galaxies and the Uses of GRBs in Cosmology

Star formation history in high redshift radio galaxies

20x increase from z = 0 to 2!

Spectral Energy Distribution of galaxies

Ultra Luminous Infared Galaxies. Yanling Wu Feb 22 nd,2005

Integral Field Spectroscopy of 2.0

Star forming galaxies at high redshift: news from Herschel

Extinction law variations and dust excitation in the spiral galaxy NGC 300

arxiv: v1 [astro-ph.co] 24 May 2012

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz

STAR FORMATION RATES observational overview. Ulrike Kuchner

Active Galactic Nuclei SEDs as a function of type and luminosity

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

Active Galactic Nuclei in the infrared: identification, energetic and properties of the obscuring material

Kai Noeske Keck Foundation Fellow Harvard-Smithsonian Center for Astrophysics

Disk Building Processes in the local Massive HI LIRG HIZOA J A prototype for disk galaxies at z=1?

Vivienne Wild. Timing the starburst AGN connection

Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models

Active Galaxies & Emission Line Diagnostics

Science with the Intermediate Layer

Benjamin Weiner Steward Observatory November 15, 2009 Research Interests

INVESTIGATING Hα, UV, AND IR STAR-FORMATION RATE DIAGNOSTICS FOR A LARGE SAMPLE OF z 2 GALAXIES

Paul Sell. University of Wisconsin-Madison Advisor: Christy Tremonti

Bursty stellar populations and AGN in bulges

How common are DSFGs in galaxy cluster progenitors?

The bolometric output of AGN in the XMM-COSMOS survey

Warm Molecular Hydrogen at high redshift with JWST

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Resolved studies of gas in high-z galaxies

Chris Pearson: RAL Space. Chris Pearson: April

Evolution of Star Formation Activity of Galaxies as seen by Herschel

Lecture 10. (1) Radio star formation rates. Galaxy mass assembly history

Dust in dwarf galaxies: The case of NGC 4214

Chien-Ting Chen! Dartmouth College

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

Measuring star formation in galaxies and its evolution. Andrew Hopkins Australian Astronomical Observatory

Astr 2310 Thurs. March 23, 2017 Today s Topics

Margherita Talia 2015 A&A, 582, 80 ELG2017. University of Bologna. m g 1

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

This document is provided by JAXA.

BUILDING GALAXIES. Question 1: When and where did the stars form?

Luminous radio-loud AGN: triggering and (positive?) feedback

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

Empirical Evidence for AGN Feedback

AGN winds and outflows

Transcription:

Dusty star-forming galaxies at high redshift (part 7) Flow of story 4 Redshifts and Spectral Energy Distributions of Infrared- Luminous Galaxies 5 Physical Characterization 1

Physical Characterization DSFG s physical characterization redshift luminosity characterization DSFG s intense IR luminosity physical setup cosmological framework galaxy formation process AGN starburst regions gas stars kinematic history dust and gas masses physical extent of galaxies interactions with other galaxies Physical Characterization DSFG s physical characterization physical characterization selection function molecular gas radio ~ X-ray characterization star formation history stellar masses kinematics dynamical time stellar IMF physical size dust characterization AGN content 2

Flow of story 5.1 5.2 5.3 Star Formation History & Dynamical Time Dust Characterization Stellar Masses Star Formation History & Dynamical Time dynamical time high-z galaxies timescale of the burst small sample + local ULIRG IRAS sample depletion timescale τ depl = molecular gas mass / SFR Solomon and Sage (1998) local merger ULIRG τ depl or L FIR / L CO merger (interaction) -> τ depl down or L FIR / L CO up 3

Star Formation History & Dynamical Time dynamical time high-z CO Bothwell et al. (2013a) 850 μm-selected source Carilli and Walter (2013) high-z molecular gas survey all CO survey τ depl = 100~200 Myr (SMGs) v.s. ~1Gyr (normal galaxies) local τ depl <- gas fraction high-z Flow of story 5.1 5.2 5.3 Star Formation History & Dynamical Time Dust Characterization Stellar Masses 4

Dust Characterization λ peak L IR realation Fig. 25 luminosity-dust temperature relation Dust Characterization λ peak L IR realation high-z dust temperature Herschel SMGs FIR SED measurement R-J select warmer dust bias Herschel-SPIRE z~2 peak high-z colder dust selection bias extended dust distributions 5

Dust Characterization dust mass FIR photometry dust mass R-J black body estimator 850 μm dust mass 250-500 μm 850 μm colder, more massive dusty galaxies 1 M dust S ν T dust (Eq. 12) Herschel-selected galaxies lower redshift Dust Characterization dust mass Ivison et al. (2011) high-z 850 μm-selected SMGs CO(1-0) observation SMGs local dust-to-gas ratio L CO /L 850 local consistent ~100 0.2 < z < 2 modest star former by Herschel dust mass stellar mass (or ssfr) gas-to-dust ratio metallicity on/off star forming main sequence gas fractions 6

Flow of story 5.1 5.2 5.3 Star Formation History & Dynamical Time Dust Characterization Stellar Masses Stellar Masses determining stellar mass high-z stellar mass 1 stellar mass high-z dusty galaxies 7

Stellar Masses Star Formation History (SFH) SFH exponentially declining constant single burst multiple-component Dunlop (2011) stellar mass : multiple-component > single burst UV emission consistent young star Stellar Masses Star Formation History (SFH) continuous SFH SFR <- UV flux starburst duration <- optical/nir emission multi-component SFH single + continuous burst UV emission driven continuous SFH optical emission single SFH 8

Stellar Masses Star Formation History (SFH) burst massive galaxies Thomas et al. (2005), McDermid et al. (2012), Pacifici et al. (2013) stellar population mass Davé et al. (2012) lognormal SFH fit halo mass calibrate lognormal SFH second late burst component Stellar Masses Star Population Synthesis (SPS) model Conroy (2013) review paper Hainline et al. (2011) Bruzual & Charlot (2003) model Maraston (2005) model dust mass ~50% 9

Stellar Masses stellar Initial Mass Function (IMF) local high-z massive stars & low-mass stars IMF bottom-heavy Chabrier (2003) IMF or Salpeter (1955) IMF stellar mass factor ~1.8 ( SFR ) Stellar Masses many works on stellar mass Borys et al. (2005) submm galaxy population high-z DSFGs stellar mass instantaneous burst SFH & constant SFH Miller-Scalo IMF (Miller & Scalo, 1979) log M = [11.14, 12.15], M = 10 0.4 MK 3.3 /LKM, LKM ~ 3.2 median M = 2.5 10 11 M AGN contamination 10

Stellar Masses many works on stellar mass Dye et al. (2008) Bruzual & Charlot (2003) photometric data stellar mass Borys et al. (2005) comparable 8 bands Stellar Masses many works on stellar mass Hainline et al. (2011) ~70 SMGs 10 % SED AGN AGN heating stellar emission rest-frame K-band rest-frame H-band M = 7 10 10 M 11

Stellar Masses many works on stellar mass Minchalowski et al. (2010) Hainline et al. (2011) 76 SMGs stellar mass M = 3.5 10 11 M IMF factor 3 (Hainline et al. 2011) AGN contamination IMF, SPS model, SFH Stellar Masses other approaches high-z SMGs IMF factor 2~3 CO dynamical measurement with assumed dark halo remaining stellar mass HI SMGs dynamical state 12

Stellar Masses other approaches abundance matching methodology M halo mass a priori massive galaxies massive halo least massive galaxies least massive halo Behroozi et al. (2013) M halo = 10 12 10 13 M, z = 2 -> M 5 10 9 10 11 M Hickox et al. (2012) halo mass Hayward (2013) stellar mass Stellar Masses connection between DSFGs high-z DSFGs stellar mass Berta et al. (2007) & Lonsdale et al. (2009) Spitzer-selected ULIRG stellar mass Bussmann et al. (2012) bump-like or powerlaw-like color select bump-like -> stellar spectra opacity feature powerlaw-like -> AGN contribution or dust opacity DOGs 2 traditional SMGs massive 13

Stellar Masses importance of stellar mass constraint DSFGs high-z population redshift galaxy main sequence NIR IFU luminosity AGN CO [CII] dynamical mass estimate high-z DSFGs stellar mass Flow of story 5.4 5.5 5.6 Stellar IMF Rest-frame Ultraviolet & Optical Spectral Characterization AGN Content 14

Stellar IMF IMF (initial mass function) physical condition IMF cf. Bastian et al. (2010) log-normal distribution + steeper slopes at low/high mass bottom-light : low mass M peak (or M ) bottom-heavy : low mass M peak (or M ) top-heavy : low mass slope Stellar IMF IMF shape at high-z Baugh et al. (2005) starburst galaxies Kennicutt (1983) IMF more flat IMF SCUBA counts match colder dust top-heavy -> more UV photons, higher yield of dust Hayward et al. (2013b) local IMF match 15

Stellar IMF IMF shape at high-z Tacconi et al. (2008) CO H 2 conversion factor, stellar mass, IMF (z~2) IMF high mass excess Kroupa IMF M/L high-j CO transition low-j integrated SMG SFH local baryon density (Blain et al., 1999) Stellar IMF IMF shape at high-z integrated SFH evolution of SMF high-z bottom-light or top-heavy IMF IMF SFR van Dokkum (2008) z~1 early type galaxies color evolution M/L bottomlight IMF Salpeter IMF consistent (van Dokkum & Conroy, 2012) 16

Stellar IMF IMF shape at high-z Davé (2008) z~2 main sequence galaxies SFR simulation match bottom-light IMF z~2 inferred SFR Stellar IMF IMF shape at low-z high SFR surface density bottom-light/top-heavy Rieke et al. (1993) & Förster Schreiber et al. (2003) Kroupa IMF factor 2-6 turnover mass Fardal et al. (2007) K-band luminosity density, CBR, SFRD intermediate mass excess Nayakshin & Sunyaev (2005) & Stolte et al. (2005) Milky Way top-heavy 17

Stellar IMF IMF shape at low-z dynamical method SPS model bottom-heavy gravity sensitive absorption line (FeH, CaII, NaI) K/M dwarfs K/M giants z~0 early type galaxies bottom-heavy kinematics M/L M/L bottom-light or bottom-heavy bottom-light -> low mass star bottom-heavy -> stellar remnants Stellar IMF IMF variation at high-z theoretical model highly star-forming bottom-light IMF starbursts bottom-heavy starbursts bottom-light/top-heavy descendant bottom-heavy IMF 18

Flow of story 5.4 5.5 5.6 Stellar IMF Rest-frame Ultraviolet & Optical Spectral Characterization AGN Content Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame optical observation optical DSFGs Swinbank et al. (2004) Hα emission 30 [NII]/Hα Hα line width -> 40 % AGN 19

Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame optical observation Fig. 26 SMG composite spectrum @ rest-frame optical/uv Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame optical observation Hα line width ~400 km/s, spatial extent < 4-8 kpc dynamical mass ~1 2 10 11 M dynamical time 10-20 Myr CO observation massive, metal-rich SMGs SFR Hα SFR FIR SFR factor 10 non-negligible AGN massive, local elliptical galaxies progenitor? 20

Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame UV observation Chapman et al. (2005) rest-frame optical rest-frame UV factor 10 extinction SMG UV luminosity factor ~120 underestimate UV spectral index β = 1.5 ± 0.8 Calzetti extinction law -> E(B V) = 0.14 ± 0.15 LBG Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame UV observation Chapman et al. (2005) SMG redder slope redder : shorter wavelength detect SMG median SMG bluer unobscured SMG β = 1.5 ± 0.8 -> L IR /L UV ~ 10 Meurer et al. (1999) attenuation relation 21

Rest-frame Ultraviolet & Optical Spectral Characterization rest-frame UV observation Reddy et al. (2012) UV spectral slope GOODS-Herschel stacked data attenuation and reddening slope local starbursts calibrate consistent dust property z~2 luminous DSFGs Rest-frame Ultraviolet & Optical Spectral Characterization another observation Banerji et al. (2011) z ~ 1.5 SMG (+SFRGs) [OII] Swinbank et al. (2004) z ~ 2 SMGs line width high-z, high-luminous SMGs dynamical mass evolutionary history large-scale wind outflow momentum-driven wind model V SFR 0.3 low-z ULIRGs consistent 22

Flow of story 5.4 5.5 5.6 Stellar IMF Rest-frame Ultraviolet & Optical Spectral Characterization AGN Content AGN Content galaxy evolution host galaxy SMBH AGN starburst classic evolutionary sequence merger -> starburst -> quasar -> elliptical integrated BH growth ~30 % AGN X-ray <- detect radio emission, optical line, NIR color, mid-ir continuum, etc 23

AGN Content X-ray observation for AGN 850-870 μm-selected galaxies number statistics (N source < 100) AGN activity star formation (from HMXBs, High-Mass X-ray Binaries) timeintensive/deep AGN fraction X-ray SFR NIR/FIR AGN Content X-ray observation for AGN Alexander et al. (2005a) radio-selected SMGs 75 % AGN 1/3 luminous AGN AGN SMGs X-ray emission star-formation HMXBs Wang et al. (2013a) ALMA-confirmed 870 μm-selected sources X-ray/FIR 24

AGN Content X-ray observation for AGN Alexander et al. (2008) X-ray + Hα (Hβ) line central BH mass BH-to-galaxy mass ratio local factor 3~5 high-z AGN AGN Content X-ray observation for AGN Fig. 27 X-ray observation summery 25

AGN Content optical observation for AGN high column density soft X-ray X-ray multi-wavelength emission line ratios optical diagnostics AGN activity DSFGs high-quality/high-sn spectrum AGN Content NIR/mid-IR observation for AGN SED NIR/mid-IR portion AGN blackbody Wien side power-law AGN warm dust (100-1000 K) mid-ir output dominant stellar mass 24 μm-based SFR contami star formation emission line old populations starlight, AGN-heated warm dust emission mid-ir spectrum 26

AGN Content NIR/mid-IR observation for AGN Lacy et al. (2004) & Stern et al. (2005) AGN identify mid-ir color selection technique SST bandpass Donley et al. (2012) deep IRAC data color-selection wedges starformation contami Flow of story 5.7 5.8 5.9 Mid-Infrared Diagnostics Mid-Infrared Spitzer-selected Populations Kinematics 27

Mid-Infrared Diagnostics mid-ir feature FIR cold dust modified blackbody emission narrow gas emission line dominant mid-ir heavy molecules emission small dust grains absorption warm dust continuum Mid-Infrared Diagnostics mid-ir feature PAH (Polycyclic Aromatic Hydrocarbon) Å heavy molecules young star 3-19 μm SFR (PAH PDR ) dust silicate mid-ir ~8 μm ~11 μm PAH emission 9.7 μm dust silicate absorption 28

Mid-Infrared Diagnostics mid-ir feature warm dust continuum relative dust distribution bolometric heating sources star formation -> hot-to-cold dust ratio 1/1000 AGN -> relative dust temperature distribution mid-ir physical interpretation Mid-Infrared Diagnostics AGN contribution to mid-ir mid-ir SMG 80 % broad PAH emission feature dominant 20 % AGN dominant mid-ir continuum slope α = 2 ( ) Menéndez-Delmestre et al. (2009) 6.2 μm 7.7 μm PAH emission ratio local ULIRG nuclear starbursts local ULIRG dust temperature distribution 29

Mid-Infrared Diagnostics AGN contribution to mid-ir Fig. 28 non-agn dominated SMGs mid-ir spectrum Mid-Infrared Diagnostics main sequence or starburst Elbaz et al. (2011) Herschel-PACS data mid-ir analysis IR8 parameter IR luminosity PAH strength local LIRG/ULIRG IR8 <- PAH main sequence galaxies -> local LIRG consistent starbursts -> local ULIRG consistent z = 1~2 ULIRG main sequence IR8 consistent Herschel-PACS-selected galaxies merger-dominated 30

Mid-Infrared Diagnostics main sequence or starburst Lee et al. (2013) mid-ir/fir survey depth z ~ 2 ULIRG less luminous sources IR8 mid-ir optical IR main sequence FIR SFR IR8 starburst indicator observational assumptions biases Flow of story 5.7 5.8 5.9 Mid-Infrared Diagnostics Mid-Infrared Spitzer-selected Populations Kinematics 31

Mid-Infrared Spitzer-selected Populations DOG (Dusty Obscured Galaxy) 24 μm-selected galaxies mid-ir excess integrated IR color 8 μm emission AGN-heating or bright PAH emission line AGN fraction Brand et al. (2006) AGN fraction = 9 % at S 24 = 350 μjy, 74 % at S 24 = 3 mjy Mid-Infrared Spitzer-selected Populations DOG (Dusty Obscured Galaxy) stellar mass NIR-bump massive stars opacity rest-frame 1.6 μm mid-ir bump -> star formation dominated mid-ir power-law -> AGN dominated Bussmann et al. (2009, 2011) z ~ 2 power-law/bump DOGs HST morphologies bump power-law merger-driven scenario bump-dogs morphology 32

Flow of story 5.7 5.8 5.9 Mid-Infrared Diagnostics Mid-Infrared Spitzer-selected Populations Kinematics Kinematics kinematic studies photometric/spectroscopic expensive HII region Swinbank et al. (2006) etc 2.0 < z < 2.5 16 SMGs merger-driven history (???) many at an early stage first pass ~ 33

Kinematics kinematic studies Fig. 29 SMGs line-profile characteristics Flow of story 5.10 5.11 5.12 Physical Size and Morphology Relationship to Normal Galaxies: the Infrared Main Sequence The FIR/Radio Correlation 34

Physical Size and Morphology physical size of SMGs physical size optical/nir stellar continuum IR interferometric observation in the mm/radio DSFGs (optical ) CO size SMG effective radii = 2 ± 1 kpc -> local ULIRG 2 size molecular gas mass 2 -> scaled-up versions comparable mass disk galaxies >8 kpc Physical Size and Morphology physical size of SMGs gas size high-j CO transitions CO(1-0) emission line width velocity size MERLIN high-j molecular gas size 2 kpc radio continuum dense star formation areas SMG size Eddinton limit ~8 kpc source unresolved point-sources 35

Physical Size and Morphology morphology of SMGs morphology underlying physical process FIR region starburst Eddinton-limit -> star formation feedback model radio morphology local FIR/radio correlation FIR region size FIR morphology high-z SMGs local ULIRGs luminosity density IR region Physical Size and Morphology morphology of SMGs optical/nir dust obscuration Kartaltepe et al. (2007) z ~ 1.2 optical-luminous galaxies 70 μm-selected DSFG interaction Kartaltepe et al. (2012) high-resolution CANDELS survey Herschel-PACS-selected galaxies visual classifications ULIRGs z ~ 2 interaction 36

Physical Size and Morphology morphology of SMGs Physical Size and Morphology morphology of SMGs Swinbank et al. (2010) z ~ 0.6-3.0 850 μm-selected SMGs size/morphology r i = 2.3 ± 0.3 kpc, r H = 2.8 ± 0.4 kpc band structured dust obscuration Sersic indices H-band light fit galaxy light distribution spheroidal/elliptical SMG stellar density local early type galaxies red, dense z ~ 1.5 galaxy (SMG s descendant) comparable/a bit higher 37

Physical Size and Morphology morphology of SMGs lensed galaxies gas, dust and stellar distribution size Hezaveh et al. (2012) lensed galaxy size distribution compact bias Flow of story 5.10 5.11 Physical Size and Morphology Relationship to Normal Galaxies: the Infrared Main Sequence 5.12 The FIR/Radio Correlation 38

Relationship to Normal Galaxies: the Infrared Main Sequence main sequence stellar mass SFR (Noeske et al, 2007b, a) high-z stellar mass SFR optically-selected galaxy dustier galaxies (Daddi et al. 2007b) first order SFR IGM gas accretion rate starburst galaxies main sequence -> ssfr main sequence Relationship to Normal Galaxies: the Infrared Main Sequence SFR-M relation SFR SFR tight Stark et al. (2009) & Papovich et al. (2011) 3 < z < 8 SFR stellar mass rest-frame UV luminosity function observed main sequence 39

Relationship to Normal Galaxies: the Infrared Main Sequence relationship between DSFGs and main sequence DSFG SFR SFR-M stellar mass SMG stellar mass (Hainline et al., 2011) main sequence (Michalowski et al., 2012) main sequence high-mass, high-sfr Relationship to Normal Galaxies: the Infrared Main Sequence building up stellar mass via merger major merger stellar mass high-z main sequence galaxies low-z merger interaction main sequence galaxy merger origin Hainline et al, 2011 stellar mass burst stellar mass 70 % higher mass Michalowski et al, 2012 40

Relationship to Normal Galaxies: the Infrared Main Sequence merger or disk Hung et al. (2013) merger rate IR luminosity (or SFR) IR-luminous systems merger rate local luminosity cutoff (local > 10 11.5 L merger) ssfr cutoff obscured/unobscured galaxies merger fraction main sequence galaxies sample Relationship to Normal Galaxies: the Infrared Main Sequence recent situation IR (or bolometric) luminosity merger DSFGs origin dominate SMG-like luminosity merger SMG burst main sequence SMG massive luminous main sequence 41

Flow of story 5.10 5.11 5.12 Physical Size and Morphology Relationship to Normal Galaxies: the Infrared Main Sequence The FIR/Radio Correlation The FIR/Radio Correlation FIR/radio correlation van der Kruit, P.C. (1971, 1973) luminosity 5 ~1.4 GHz emission 10 μm IR/radio emission Harwit & Pacini (1975) IR emission dust thermal re-radiation, radio emission supernova remnant IR emission 1980 (IRAS) 42

The FIR/Radio Correlation FIR/radio correlation q IR parameter IRAS era recently (Ivison et al, 2010a) local starburst q IR = 2.34 ± 0.72 (Yun et al., 2001) The FIR/Radio Correlation FIR/radio correlation evolution with redshift Magnelli et al. (2010) SMG OFRG q IR = 2.17 ± 0.19 DSFGs FIR excess q IR Ivison et al. (2010a, b) BLAST and Herschel-selected samples q IR 1 + z 0.26±0.07, q IR 1 + z 0.15±0.03 Casey et al. (2012a) z ~ 2 Herschel-selected DSFGs -> q IR 1 + z 0.30 43

The FIR/Radio Correlation FIR/radio correlation evolution with redshift IR-selected galaxies selection bias Ivison et al. (2010b) q IR radio/ir sample Sargent et al. (2010) selection bias FIR/radio correlation The FIR/Radio Correlation spectral index radio spectral index α = 0.8 (Condon, 1992) Ibar et al. (2009) fainter radio sources Ivison et al. (2010a, b) α = 0.75 ± 0.06 redshift α 1 + z 0.14±0.20 44

The FIR/Radio Correlation usage of FIR/radio correlation IR data L IR SED characteristics ( dust temperature) obscured SFR radio submm beamsize multi-wavelength counterpart obscured SFR distribution FIR/radio correlation galaxy-scale morphology The FIR/Radio Correlation underlying physics Volk (1989) & Lisenfeld et al. (1996) cooling timescale electron % νl ν 2 10 6 L IR radio spectral index steep Brems ionization flat cosmic ray proton cooling 45