Chapter4 Time Domain Analysis of Control System

Similar documents
EE Control Systems LECTURE 11

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

EEE 303: Signals and Linear Systems

Control Systems. Transient and Steady State Response.

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Trigonometric Formula

Note 6 Frequency Response

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

Math 266, Practice Midterm Exam 2

( A) ( B) ( C) ( D) ( E)

UNIT I FOURIER SERIES T

ECEN620: Network Theory Broadband Circuit Design Fall 2014

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Approximately Inner Two-parameter C0

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

3.2. Derivation of Laplace Transforms of Simple Functions

1973 AP Calculus BC: Section I

Right Angle Trigonometry

Poisson Arrival Process

Signals & Systems - Chapter 3

Continous system: differential equations

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

15. Numerical Methods

Poisson Arrival Process

ELG3150 Assignment 3

Fourier Series: main points

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark]

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

EXERCISE - 01 CHECK YOUR GRASP

BMM3553 Mechanical Vibrations

page 11 equation (1.2-10c), break the bar over the right side in the middle

U1. Transient circuits response

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

EE Control Systems LECTURE 11

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

1. Introduction and notations.

Response of LTI Systems to Complex Exponentials

Linear Systems Analysis in the Time Domain

Chapter 3 Linear Equations of Higher Order (Page # 144)

Mixing time with Coupling

CS 688 Pattern Recognition. Linear Models for Classification

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

On the Hubbard-Stratonovich Transformation for Interacting Bosons

1 Finite Automata and Regular Expressions

1. Mathematical tools which make your life much simpler 1.1. Useful approximation formula using a natural logarithm

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

S.E. Sem. III [EXTC] Applied Mathematics - III

Bus times from 18 January 2016

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

FOURIER ANALYSIS Signals and System Analysis

AsymetricBladeDiverterValve

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

ROUTH-HURWITZ CRITERION

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

MODERN CONTROL SYSTEMS

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

where: u: input y: output x: state vector A, B, C, D are const matrices

The Procedure Abstraction Part II: Symbol Tables and Activation Records

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

T h e C S E T I P r o j e c t

Jonathan Turner Exam 2-10/28/03

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Revisiting what you have learned in Advanced Mathematical Analysis

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage?

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

A TRANSIENT HEAT CONDUCTION PROBLEM OF SEMI-INFINITE SOLID CIRCULAR CYLINDER AND ITS THERMAL DEFLECTION BY QUASI-STATIC APPROACH

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Relation between Fourier Series and Transform

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

Data Structures Lecture 3

Chapter 7 Stead St y- ate Errors

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

TABLES AND INFORMATION RETRIEVAL

Introduction to Laplace Transforms October 25, 2017

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Chapter 3 Fourier Series Representation of Periodic Signals

Linear Algebra Existence of the determinant. Expansion according to a row.

From Fourier Series towards Fourier Transform

Special Curves of 4D Galilean Space

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

Chapter 12 Introduction To The Laplace Transform

Consider serial transmission. In Proakis notation, we receive

National Quali cations

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Transcription:

Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio of chrcriic quio C R b b m L b b G L m m m h chrcriic quio of h ym i dfid L Auomic Corol Sym

Auomic Corol Sym rfr fucio:, p σ ± ± pol of h clod loop q r m i i p z R C ] ][ [ G σ σ z i : zro of h clod loop 4 q r C p α β i i co q r i p q r p D C B C ϕ p z C q r m i i ] ][ [ σ σ Sp rpo:

Auomic Corol Sym 5 Coidr h h chrcriic quio of LI ym F L Whr ll h coffici r rl umbr. I ordr h hr b o roo of h bov quio wih poiiv rl pr, i i cry bu o uffici h. All h coffici of h polyomil hv h m ig.. No of h coffici vih. 4. Rouh biliy cririo 6 6 6 6 6 6 5 6 6 5 4 4 5 5 6 4 6 F E F F E C ED C A C C A C E C AD BC A A D A A C A B A B A h Rouh bulio F L for 6

Rou-Hurwiz cririo h roo of h polyomil r ll i h lf hlf of h -pl if ll h lm of h fir colum of h Rouh Arry r of h m ig. If hr r chg of ig i h lm of h fir colum, h umbr of ig chg idic h umbr of roo wih poiiv rl pr. h cry d uffici codiio for h biliy of ym 7 Exmpl: Soluio: h chrcriic quio of ym i 4 5 Drmi h biliy of h ym uig Rouh cririo.. Chc h cry codiio. Rouh rry i 4 5.5 5 h ym h wo roo locd i h righ hlf of h -pl. 8 Auomic Corol Sym 4

Spcil c h fir lm i y o row of h Rouh Arry i zro bu h ohr lm r o. W c rplc h zro lm i h Rouh bulio by rbirry mll poiiv umbr ε d h procd wih h Rouh. 9 Exmpl: h chrcriic quio of ym i 5 4 5 5 Drmi h biliy of h ym uig Rouh cririo. Soluio: Rouh rry i 5 4 ε 5ε ε 5ε ε 5ε 5 5 hr r wo ig chg i h fir colum of h bulio, h ym h wo roo locd i h righ hlf of h -pl. Auomic Corol Sym 5

Spcil c h lm i o row of h Rouh Arry r ll zro. Exmpl: h chrcriic quio of h ym i: 6 6 h Rouh rry i : h uxiliry quio i: 6 6 6 A 6 6 6 6 h ig of h lm i h fir colum do o chg, h ym i bl. Auomic Corol Sym 6

Exmpl: R C Drmi h vlu of d o m h clod loop b bl. Soluio: h chrcriic quio: Rouh rry: >, >, > > > h codiio for h biliy i: < < 4 Auomic Corol Sym 7

6 4 < Sbl 4 6 8 < < 5 Exmpl: h chrcriic quio of h ym i 8 Drmi h biliy of h ym. Alyz how my roo li bw h imgiry xi d h li. Soluio: Rouh rry: h ym i bl. L h chrcriic quio bcom: 8 9.75 Im 5 R 6 Auomic Corol Sym 8

5 Rouh rry for h bov quio: 5.8 hr i o roo o h righ id of h li -. Im R 7 4.6 Sdy rror c r 8 Auomic Corol Sym 9

R E C G B H R E G H E R G H 9 h yp of h corol ym G z z L z r r m i ν q p p L pq ν m v z p i ν, yp ym ν, yp ym ν, yp ym Auomic Corol Sym

Auomic Corol Sym. poiio rror co For p ipu u R r / H G R H G R H G R E R R GH GH P GH b. vlociy rror co For rmp ipu: R r / H G R H G R H G R E v G H v R

Auomic Corol Sym c. Acclrio rror co for cclrio ipu r R / H G R H G R H G R E H G R 4 Sdy rror

Exmpl: Soluio: Drmi h dy rror, wh h ipu i u, d. R C 5 p G H 5 v G H 5 G H 5 5 p P v v 6 Auomic Corol Sym

4. h ri rpo of h fir-ordr ym 4.. h mh modl C R R C 7 4.. h p rpo r u, R/ C GR c 8 Auomic Corol Sym 4

c lop.6 86.5% 95% 98.% 99.% 6.% 4 5 9 Impul rpo: R C C R g c c c / 4 Auomic Corol Sym 5

Rmp rpo : R C C G R / c / c / c r r c [ c r ] [ / ] Auomic Corol Sym 6

4. h ri rpo of h cod-ordr ym 4.. h mhmicl modl R C R C Φ C R l ς Φ 4 Auomic Corol Sym 7

h chrcriic quio : h roo of h chrcriic quio r, - - 5. udrdmpd < <, - -, σ ± d If ipu i ui p u: C d d 6 Auomic Corol Sym 8

c co d i d co d i d - - i d θ - θ rcco 7 c 4 8 Auomic Corol Sym 9

Auomic Corol Sym 9, - -, c c c r c. Criiclly dmpd rpo u 4 >, ± ] [ ] [ c c - - - -. Ovr dmpd c L ] [ ] [ c r c c

4. udmpd c, - -, ± c c - co c 4 4. im domi prformc pcificio. Ri im r. h p im p 4 Auomic Corol Sym

. Prcg ovrhoo σ p σ c P - c c P % 4. Sdy- rror c r % r 4 5. Slig im 44 Auomic Corol Sym

4.4 h rliohip bw h prformc pcificio d ym prmr < <. Ri im-ym prmr c Accordig o dfiiio: i θ c r d c r r i d r θ d r θ π r π θ d π θ 45. P im -ym prmr P P π π d π d π c.9. σ p r ±.5 or±. r p 46 Auomic Corol Sym

. Prcg ovrhoo -ym prmr c co d i d P π d π π π P d ξ ξ c p p co i d p d p π P coπ i π c 47 π π c P coπ i π σ P c P c c P % % c σ P π 48 Auomic Corol Sym 4

σ p π % 8 Φ σ p 6 σ p Prcg ovrhoo 4.5..5 σ p i oly rld o. 49 4. h lig im - -ym prmr c c c ±.or.5 5 Auomic Corol Sym 5

c 4 - - l - 5 < <.9 pproximly: 4 for. for.5 5 Auomic Corol Sym 6

Exmpl: R C h dird pcificio r: σ %, P P Wh hould h vlu of d b? Drmi h vlu of d r. Soluio: h rfr fucio of h clod loop i C R, 5 π..456 P π d π.5rd /.5. 78 C R 54 Auomic Corol Sym 7

r π -θ r.65 - θ g - -. rd 4. 86 for 5% 55 4.5 ri rpo of highr-ordr ym. Sp rpo of highr ordr ym C q p r m [ σ z i i ][ σ ] C p q r α β 56 Auomic Corol Sym 8

q r p co i C B C q r p i φ i D r c r c c r 57. h domi pol of highr-ordr ym q r p co i C B C q r p i φ i D 58 Auomic Corol Sym 9

domi clod loop pol 主导极点 [ ] σ R[ polof clod loop] < R[ domi pol] 5 hr i o zro of h clod loop r h domi pol 59 Auomic Corol Sym