PHYS%575A/B/C% Autumn%2015! Radia&on!and!Radia&on!Detectors!! Course!home!page:! h6p://depts.washington.edu/physcert/radcert/575website/%

Similar documents
Recent Discoveries in Neutrino Physics

Neutrino Experiments with Reactors

Daya Bay and joint reactor neutrino analysis

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

Daya Bay Neutrino Experiment

Prospects for Measuring the Reactor Neutrino Flux and Spectrum

arxiv: v1 [hep-ex] 14 May 2015

Precise measurement of reactor antineutrino oscillations at Daya Bay

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

Reactor-based Neutrino Experiment

Observation of Electron Antineutrino Disappearance at Daya Bay

The Double Chooz Project

Neutrino Experiments with Reactors

The Daya Bay Reactor Neutrino Experiment

Antineutrino Detectors for a High-Precision Measurement of θ13 at Daya Bay

Reactor Neutrino Oscillation Experiments: Status and Prospects

The Daya Bay Reactor Neutrino Oscillation Experiment

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

Wei Wang University of Wisconsin-Madison. NNN09, Estes Park, Colorado, Oct 8, 2009

The Daya Bay Reactor Neutrino Experiment

The Daya Bay Anti-neutrino Experiment

Status of the Daya Bay Experiment

Observation of Mixing Angle 13

Daya Bay Neutrino Experiment NUFACT05. Jun Cao. Institute of High Energy Physics, Beijing

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos

Recent Results from RENO & Future Project RENO-50

Status of The Daya Bay Reactor Neutrino Experiment

Particle Physics: Neutrinos part I

New results from RENO and prospects with RENO-50

Correlated Background measurement in Double Chooz experiment

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Neutrino Masses and Mixing

KamLAND. Studying Neutrinos from Reactor

Neutrinos. Why measure them? Why are they difficult to observe?

Sterile Neutrino Experiments at Accelerator

arxiv: v1 [hep-ex] 1 Dec 2015

Status of 13 measurement in reactor experiments

Daya Bay Reactor Neutrino Experiment

The Double Chooz reactor neutrino experiment

arxiv:hep-ex/ v1 15 Aug 2006

Current Results from Reactor Neutrino Experiments

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Measurement of q 13. Kwong Lau University of Houston Flavor Physics & CP Violation 2013 (FPCP 2013) Búzios, Rio de Janeiro, Brazil May 22, 2013

Precise sin 2 2θ 13 measurement by the Daya Bay reactor neutrino experiment.

Recent oscillation analysis results from Daya Bay

Reactor Neutrinos I. Karsten M. Heeger. University of Wisconsin Pontecorvo Neutrino Summer School Alushta, Ukraine

Short baseline neutrino oscillation experiments at nuclear reactors

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

KamLAND. Introduction Data Analysis First Results Implications Future

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

Andrey Formozov The University of Milan INFN Milan

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

New Results from RENO

Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA)

The ultimate measurement?

- Future Prospects in Oscillation Physics -

Latest results from Daya Bay

arxiv: v1 [hep-ex] 4 Mar 2014

PoS(NEUTEL2017)007. Results from RENO. Soo-Bong Kim. for the RENO collaboration Seoul National University, Republic of Korea

A Trial of Neutrino Detection from Joyo Fast Research Reactor

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다.

Steve Biller, Oxford

Solar Neutrino Oscillations

Status and Prospects of Reactor Neutrino Experiments

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Radio-chemical method

Neutron background and possibility for shallow experiments

Double Chooz and non Asian efforts towards θ 13 Journal of Physics: Conference Series

Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 )

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

The JUNO veto detector system. Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing

Observation of Reactor Antineutrino Disappearance at RENO

Latest Results of Double Chooz. Stefan Schoppmann for the Double Chooz Collaboration

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

Neutrino detectors. V. Lozza,

The GERmanium Detector Array

Neutron flux measurement using fast-neutron activation of 12 B and 12 N isotopes in hydrocarbonate scintillators

Neutrino oscillation physics potential of Hyper-Kamiokande

Jelena Maricic Drexel University. For Double Chooz Collaboration. Spain. France. Germany U.S.A. Japan Russia. Brazil U.K. Courtesy of T.

arxiv: v1 [hep-ex] 27 Sep 2011

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Results and Prospects of Neutrino Oscillation Experiments at Reactors

Oak Ridge and Neutrinos eharmony forms another perfect couple

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

XMASS: a large single-phase liquid-xenon detector

Solar Neutrinos in Large Liquid Scintillator Detectors

The COHERENT Experiment: Overview and Update of Results

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Search for Sterile Neutrinos with the Borexino Detector

Transcription:

PHYS%575A/B/C% Autumn%2015! Radia&on!and!Radia&on!Detectors!! Course!home!page:! h6p://depts.washington.edu/physcert/radcert/575website/% 9:!Case!studies:!!Non@Cherenkov!neutrino! detectors;!neutron!detectors;!accelerators! R.%Jeffrey%Wilkes%% Department%of%Physics% B305%PhysicsGAstronomy%Building% 206G543G4232% wilkes@u.washington.edu%

Course%calendar%(revised)% Tonight% 2%

Announcements% PresentaRon%dates:%Tues%Dec%1,%Tues%Dec%8,%and%Thurs%Dec%10% You%MUST%send%me%your%presentaRon%(pdf%or%ppt)%no%later%than%5:30% pm%on%the%day%of%your%talk% I%will%upload%all%slides%for%each%session%so%online%aYendance%is%possible% % %% 11/24/15% 3%

JPARC neutrino beam uses off-axis technique Narrow band ν µ beam: 2.5 o off-axis Proton beam Target Horns Decay Pipe 280m Hall θ# Beam axis Super-K. To get anti-neutrinos: reverse horn current T2K-I event statistics at SK: (Off axis-2.5 deg, 22.5 kt, per year) 2200 total ν µ events 1600 ν µ CC ν e ~ 0.4% at ν µ peak E Hyper-K site Super-K site 0.78 o Beam s eye view Beam axis 2.5 o JPARC beam covers both sites Target/Horn magnet test setup Must handle pulses of 100s of ka

T2K Neutrino E spectra: broadband vs off-axis νµ Flux x CC cross section (arbitrary units) 2 o 2.5 o 3 o Off axis angle Eν# Broadband (on-axis)

LowGenergy%(reactor)%neutrino%oscillaRon%experiments% Nuclear%reactors%provide%high%fluxes%of%electron%anRneutrinos% Flux%directly%related%to%power%output%of%nuclear%plant% Baseline%L%can%be%shorter%since%energy%is%few%MeV%(recall:%L/E%~%proper% Rme%for%neutrino)% Pure%water%detectors%are%not%opRmal% %small%crossgsecron*% Use%liquid%scinRllator%(fluors%in%mineral%oil)%or%Cd%compounds% % *%But:%Doping%water%with%gadolinium%produces%huge%cross%secRons% GADZOOKS%=%plan%to%turn%SuperGK%into%a%Gd%detector%for%anRnu% Neutrons%captured%by%Gd,%%90%%capture%efficiency%for%1%%Gd%in%water% Gd%!%Big%%fat%8%MeV%gamma%signal%when%it%decays,%easy%to%detect%and% idenrfy% Illustrations in this section from presentations by K. Heeger, U. Wisc Y. Wang and J. Cao, ICHEP Beijing 11/24/15% 6%

Reactor Antineutrinos Source ν e from β-decays # of n-rich fission products Detection inverse beta decay ν e + p e + + n observed spectrum calculated reactor spectrum pure νe source# > 99.9% of νe are produced by fissions in 235 U, 238 U, 239 Pu, 241 Pu mean energy of νe: 3.6 MeV only disappearance experiments possible Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 7

Observation of Reactor ν e Disappearance KamLAND 2003 1kt liquid scintillator detector Kamioka Reactor Neutrino Physics 1956-2003 55 reactors mean, flux-weighted reactor distance ~ 180km solar predicted KamLAND, PRL 90:021802 (2003) Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013

Long history: Hanford Experiment (1953) F. Reines, C. Cowan inverse beta decay ν e + p n + e + annihilates promptly n + 108 Cd 109m Cd 109 Cd + γ 300 liters of liquid scintillator loaded with cadmium signal: delayed coincidence between positron and neutron capture on cadmium 0.41+/- 0.20 events/minute high background (S/N ~ 1/20) made the Hanford experiment inconclusive Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 9

The Savannah River (version 2 of Reines) Detector Improved design (1956), bigger reactor tanks I, II, and III were filled with liquid scintillator and instrumented with 5 PMTs target tanks (blue) were filled with water+cadmium chloride inverse beta decay ν e + p e + + n inverse beta decay would produce prompt and delayed signal in neighboring tanks Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 10

low E anti-neutrino detection: Inverse-β reaction in liquid scintillator + ν + p e + e n Illustrations in this section from presentations by Y. Wang, and J. Cao, ICHEP Beijing K. Heeger, U. Wisconsin τ 180 or 28 µs(0.1% Gd) n + p! d + γ (2.2 MeV) n + Gd! Gd* + γ s (8 MeV) Neutrino Event: coincidence in time, space and energy Neutrino energy: E T ) ν e + + T + ( M M + n n p m e + kev MeV: Threshold Y. Wang, ICHEP Beijing

The Daya Bay Experiment 6 reactor cores, 17.4 GW th Relative measurement 2 near sites, 1 far site Multiple detector modules Good cosmic shielding 250 m.w.e @ near sites 860 m.w.e @ far site Redundancy 3km tunnel 12

The Daya Bay Detectors Automated Calibration Units (ACU) reflector 40 t mineral oil 20 t LS 20 t Target (Gd doped) reflector Multiple AD modules at each site to check uncorr. syst. err. Far: 4 modules near: 2 modules Multiple muon detectors to reduce veto eff. uncertainties Water Cherenkov 2 layers RPC 4 layers at the top + telescopes 13

Daya Bay Detectors 6 functionally identical detectors Gd-LS defines target volume, no position cut Dual tagging systems: 2.5 meter water shield and RPCs mineral oil Gd-doped liquid scintillator ν e + p e + + n liquid scintillator γ-catcher 5 m target mass: 20 ton per AD photosensors: 192 8 -PMTs energy resolution: (7.5 / E + 0.9)% Two-zone ultrapure water Cherenkov detector multiple detectors allow comparison and cross-checks Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 14

Tunnel and Underground Lab. 15

Antineutrino Detector J. Cao (IHEP) Daya Bay 16

Muon System Installation OWS IWS 17

Liquid Scintillator Hall Mineral Oil Liquid Scintillator 185 ton 0.1% Gd-LS Filling Equipment ISO tank equiped with load cell. Target mass errorr ~0.03% Daya Bay LS mixing equipment 18

Antineutrino Detector Installation - Near Hall Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

Daya Bay Experiment Three Underground Experiment Halls Hall 3: began 3 AD operation on Dec. 24, 2011 Hall 2: began 1 AD operation on Nov. 5, 2011 Hall 1: began 2 AD operation on Sep. 23, 2011 Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 20

Antineutrino Candidates (Inverse Beta Decay) Prompt + Delayed Selection IBD candidates ν e + p e + + n Uncertainty in relative E d efficiency (0.12%) between detectors is largest systematic. Prompt Energy Signal Delayed Energy Signal Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 21

DoubleGbeta%decay,%with%and%without%neutrinos% Ordinary%doubleGbeta%decay:% Simultaneous%decays%of%2%neutrons%in%a%nucleus% Neutrinoless%doubleGbeta%decay:% AnRneutrinos%annihilate%(requires!an&nu=nu!!)! Illustrations in this section from presentations by J. Detwiler, UW C. M. O Shaughnessy,U.N.Carolina, June 2015 S. Elliott, LBNL 11/24/15% 22%

Majorana%neutrinos% 1937:%EYore%Majorana%proposed%possibility%of%spinG1/2% parrcles%(fermions)%could%be%their%own%anrparrcles% Neutral%spinG1/2%parRcles%are%described%by%a%real%wave% equaron%(majorana%equaron)% So,%idenRcal%to%their%anRparRcle:%wave%funcRons%of%parRcle% and%anrparrcle%are%complex%conjugates% CreaRon%and%annihilaRon%operators%are%idenRcal% Standard%Model%assumes%fermions%are%Dirac%parRcles,%with% wavefuncrons%and%crearon/annihilaron%operators%disrnct% All%StandardGModel%fermions%except%neutrinos%are%known% to%have%disrnct%anrparrcles% BUT:%nonGzero%neutrino%mass%is%nonGSM% Hypothesized% sterile %neutrinos%(not%observed%because% they%do%not%display%weak%interacrons,%only%gravity)%could% be%majorana% In%supersymmetry%models,%neutralinos%(superpartners%of% gauge%bosons%and%higgs%bosons)%are%majorana.% Ettore Majorana 1906 1938 (?) Majorana disappeared from a ferryboat in 1938. Friends presumed suicide. Conspiracy theorists believe he may have hidden in Argentina or Italy and lived until 1959. 11/24/15% 23%

Why%are%neutrino%masses%so%much%smaller%than% everybody%else?% Do%they%relate%to%Supersymmetry?% Are%they%Majorana%fermions?% Could%this%be%connected%to%maYer/anRmaYer%asymmetry%in% the%universe%(do%neutrinos%exhibit%cp%violaron)%?% 11/24/15% 24%

abc% 11/24/15% 25%

One%approach:%Use%ultraGpure%Germanium%detectors% abc% Majorana Experiment design: 11/24/15% 26%

Deep%underground%site:% Homestake%Gold%Mine%!%Sanford% Underground%Research%Facility% Located%in%Lead,%South%Dakota% Site%for%Ray%Davis%solar%neutrino% experiment% Deepest%facility%in%USA% 11/24/15% 27%

Majorana%Experiment%(USGCanadaGRussiaGJapan)% Ge%detectors%in% superglow%bg%site% (Davis%campus%in% SURF,%4850%s%deep)% 3-module string 57-crystal module Natural Ge enriched to 86% 76 Ge Modular expand to 1 ton total Ge 11/24/15% 28%

Individual%Ge%crystal%in%Cu%mounRng% abc% (Teflon) (other plastics) 11/24/15% 29%

abc% For%now:%demonstrator%project%with%44%kg%Ge% 11/24/15% 30%

abc% UltraGlowGBG% highgpurity% electroformed% Cu%mounRngs% for%ge%crystals% 11/24/15% 31%

Event%selecRon%for%background%rejecRon% Main%BGs:% High%energy%gammas% Neutrinos% Muon%interacRons% SpallaRon%products% 11/24/15% 32%

Shielding%against%neutrons%and%gammas% 11/24/15% 33%

abc% 11/24/15% 34%

Majorana%goals:%milliGeV%neutrino%mass%determinaRon,% as%well%as%majorana/dirac%determinaron% 11/24/15% 35%

Neutron! detectors! Illustrations in this section from: Neutron Detection Systems, Robert Runkle, 11/24/15% PNNL Radiation Detection for Nuclear Security Summer School 2014 36%

Neutron%detectors% Neutron%detectors%use%nuclides%that%capture%n%and%emit%charged%parRcles% ReacRons%used%include%(σ s%below%are%for%thermal%n s)% 10B(n,α)%[σ%~4000%b]%!%2.31%and%2.79%MeV%Q%values%!%~1.5%MeV%alphas% 6Li(n,α)%[σ%~1000%b]%!%4.78%MeV%Q%!%~%2%MeV%alphas% 3He(n,p)%[σ%~5000%b]%!%0.76%MeV%Q%!%~%0.6%MeV%protons% 157Gd%(many%reacRons,%to%gammas%and%e s)%[σ%~250,000%b%!%]% Boron%(BF 3 %gas,%or%bgcoated)%proporronal%tubes% Inner%surface%of%ionizaRon%chamber%is%covered%with%a%thin%coat%of%boron,%or% BF3%gas%is%used%to%fill%the%PC% Neutron%is%captured%by%a%boron%atom%and%an%energeRc%alpha%parRcle%is% emiyed% % Alpha%parRcle%and%e s%cause%ionizaron%within%the%chamber%% www.centronic.co.uk 11/24/15% 37%

% 3 He%proporRonal%tubes% Example:%SNO%neutrino%detector% Neutron%detectors% Neutrino%Signal:%Neutron%from%NC% interacron%% Neutrons%capture%via%3He(n,p)3H%in%the% NCD%and%produce%%573%keV%p%+%191%keV% trirum%ionizaron%tracks.% DisRnguishable%Backgrounds:% ν %% %TriRum%in%3He% 3H%decays%deposit%on%average%6%keV%in%the%gas%but%pileGup%can%produce% proporronal%counter%signals%above%threshold.%%lowgtemperature% purificaron%of%the%3he%has%resulted%in%negligible%background%levels.% %% %Surface%and%Bulk%Alpha%AcRvity%% 232Th%and%238U%chains%in%the%NCD%walls,%along%with%210Po%surface%acRvity,% produce%α s%that%underlie%the%neutron%capture%peak.%these%events%can%be% rejected%by%event%by%event%analysis%of%digirzed%pulses.%% (see% Event%IdenRficaRon%by%Pulse%Shape%Analysis )% %% %Electrons%and%Gammas% betas%and%gammas%from%the%232th%and%238u%chains%only%deposit%764%kev% through%extensive%mulrple%scayering.%%less%than%%2x10g4%fall%into%the% neutron%window.% 11/24/15% 38% p ν or γ, E>2.22 MeV 2H n 3He t 3He p 3H p α e ν Anode γ γ, Eγ=0.7-2.0 MeV www.sno.phy.queensu.ca/

Sudbury%Neutrino%Observatory% 1000 tonnes D 2 O Support Structure for 9500 PMTs, 60% coverage 12 m Diameter Acrylic Vessel 1700 tonnes Inner Shielding H 2 O 5300 tonnes Outer Shield H 2 O Urylon Liner and Radon Seal 39%

SNO%Neutral%Current%DetecRon%Array% NCD Array: 3 He proportional counters detect the neutrons liberated from deuterium by neutrinos. Total Length: 398 m Vertical Strings: 40 n capture efficiency: ε n ~21% ν x n Neutral-current process (Z 0 boson) is equally sensitive to all flavors of nu 40%

SNO%NC%detectors% Correlated%E%and%pulse%width% idenrfies%nc%events%from%bg% 1.0 He(n,p)t f(e)de (arbitrary units) 0.8 0.6 0.4 0.2 Compton/Beta Bulk Alpha 0.0 0 200 400 600 800 1000 Energy (kev) 3.0 2.5 Compton/Beta Pulse Width (µs) 2.0 1.5 1.0 He(n,p)t 0.5 Bulk Alpha 0.0 0 200 400 600 11/24/15% 41% Energy (kev) 800 1000

Neutron%detectors% Neutron!Detectors!for!Security!Monitors! % Significant%Nuclear%Material%(SNM) %=% Plutonium%and%highly%enriched%Uranium% % Neutrons%are%not%emiYed%with% significant%intensity%from%natural%sources% 11/24/15% 42%

Neutron%detectors% Why%not%use%widely%available,%highly%efficient%gammaGray%detectors?% 11/24/15% 43%

Neutron%detectors% Gamma%spectroscopy%(counRng%+%precise%energy%spectrum)%is%useful%when% Isotopic%composiRon%is%measurement%desired,%or% Broad%%range%of%materials%may%be%of%interest,%or%% Source%may%be%shielded%by%water%or%hydrogenous%materials% Neutron%detectors%(counRng)%are%beYer%when% Material%mass%is%quanRty%of%interest% Plutonium%is%source% Source%may%be%shielded%by%highGZ%materials% 11/24/15% 44%

Neutron%detectors% Neutron%Detectors%for%Security%Monitors% 11/24/15% 45%

Neutron%detectors% 3He%Neutron%Detectors%for%Homeland%Security%RadiaRon%Portal%Monitors% 11/24/15% 46%

Neutron%detectors% Liquid%scinRllator%detectors%have%much%faster%response%but%low%efficiency% compared%to%3he%%% For%highGintensity%sources%(>10 4 %n/sec%not%a%problem% Can%use%correlaRons%(mulRGneutron%emission)%to%idenRfy%fission%sources:%n%counts%are% not%poissongdistributed:%larger%variance%% 11/24/15% 47%

IAEA and Nuclear Non-Proliferation IAEA Interest: Improved knowledge of input plutonium mass at reprocessing facility or repository currently no better than 5-10% Research reactor power monitoring currently uses intrusive tech. Verification of bilateral agreements maybe future role for agency Detection with minimal overburden allows widespread deployment Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013

Examples of monitoring detectors under development CORMORAD: Gd/Plastic segments, no shield/veto Rnd. Bkg x10 2 Rx On/Off Exp. signal/obs.bkg ~1/100 LLNL/SNL: Gd-Water Cerenkov, poly shield/veto Exp.signal/Obs.bkg ~1/100 PANDA36: Gd/Plastic segments, no shield/veto Exp. signal/obs. bkg ~1/50 SNL/LLNL: LiZnS/Plastic, poly shield/veto Neutron capture PSD gives >10 2 bkg rejection Nucifer: GdLS, lead/poly/ veto, 7m from RR Rnd. Bkg x10 5 Rx On/Off Careful assessment of cosmogenic and reactor background required Detectors with high selectivity of e+ and/or neutron capture required Ref: Bowden, LLNL Karsten Heeger, Univ. of Wisconsin NIST, March 15, 2013 49