NONLINEAR ANALYSIS OF PLATE BENDING

Similar documents
Nonlinear Bending of Strait Beams

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

AS 5850 Finite Element Analysis

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

HIGHER-ORDER THEORIES

VSMN30 FINITA ELEMENTMETODEN - DUGGA

Finite element discretization of Laplace and Poisson equations

CIE4145 : STRESS STRAIN RELATION LECTURE TOPICS

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

Non-Linear Analysis of Interlaminar Stresses in Composite Beams with Piezoelectric Layers

Buckling Analysis of Piezolaminated Plates Using Higher Order Shear Deformation Theory

HIGHER-ORDER THEORIES

1 Isoparametric Concept

GAS FOIL BEARING ANALYSIS AND THE EFFECT OF BUMP FOIL THICKNESS ON ITS PERFORMANCE CHARACTERISTICS USING A NON-LINEAR MATRIX EQUATION SOLVER

An adaptive Strategy for the Multi-scale Analysis of Plate and Shell Structures with Elasto-plastic Material Behaviour

Thermal buckling analysis of skew bre-reinforced composite and sandwich plates using shear deformable nite element models

ME311 Machine Design

Finite Strain Elastic-Viscoplastic Model

The Finite Element Method

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Dynamic Characteristics Analysis of Blade of Fan Based on Ansys

Response Sensitivity for Nonlinear Beam Column Elements

Free Vibration of Pre-Tensioned Electromagnetic Nanobeams

Derivation of Eigenvalue Matrix Equations

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method

Keywords- Active vibration control, cantilever composite beam, Newmark-β method

RPT nite-element formulation for linear dynamic analysis of orthotropic plates

St. Venants Torsion Constant of Hot Rolled Steel Profiles and Position of the Shear Centre

Analysis of Structural Vibration using the Finite Element Method

Twist analysis of piezoelectric laminated composite plates

Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

A Comparative study of Load Capacity and Pressure Distribution of Infinitely wide Parabolic and Inclined Slider Bearings

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

3 Finite Element Parametric Geometry

Elastic Analysis of Functionally Graded Variable Thickness Rotating Disk by Element Based Material Grading

Instantaneous Cutting Force Model in High-Speed Milling Process with Gyroscopic Effect

Free Vibration Analysis of Stiffened Laminated Plates Using a New Stiffened Element

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

Jacob Fish and Kamlun Shek 1 Departments of Civil and Mechanical Engineering Rensselaer Polytechnic Institute Troy, NY Abstract.

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

Bending behaviors of simply supported rectangular plates with an internal line sagged and unsagged supports

Finite Element Analysis

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

Finite Element Model of a Ferroelectric

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures

MHD Effects in Laser-Produced Plasmas

Mechanical Properties

A New Approach to the Fatigue Life Prediction for Notched Components Under Multiaxial Cyclic Loading. Zhi-qiang TAO and De-guang SHANG *

Numerical Analysis of Transient Responses for Elastic Structures Connected to a Viscoelastic Shock Absorber Using FEM with a Nonlinear Complex Spring

At the end of this lesson, the students should be able to understand:

Finite Element Analysis of Magneto-Superelastic Behavior of Shape Memory Alloy Composite Actuator

The Weak Patch Test for Nonhomogeneous Materials Modeled with Graded Finite Elements

2008 AP Calculus BC Multiple Choice Exam

2. Background Material

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Development of solid-shell elements for large deformation simulation and springback prediction

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE

Higher-Order Discrete Calculus Methods

FINITE ELEMENT ANALYSIS OF SLOSHING IN LIQUID-FILLED CONTAINERS

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

PHYS-333: Problem set #2 Solutions

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Chapter 3 Lecture 14 Longitudinal stick free static stability and control 3 Topics

Direct Approach for Discrete Systems One-Dimensional Elements

Selective Mass Scaling (SMS)

GH. Rahimi & AR. Davoodinik

( ) Abstract. 2 FEDSS method basic relationships. 1 Introduction. 2.1 Tensorial formulation

The influence of electron trap on photoelectron decay behavior in silver halide

cycle that does not cross any edges (including its own), then it has at least

843. Efficient modeling and simulations of Lamb wave propagation in thin plates by using a new spectral plate element

The pn junction: 2 Current vs Voltage (IV) characteristics

Static and Dynamic Analysis of Bistable Piezoelectric- Composite Plates for Energy Harvesting

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

Effects of Couple Stress Lubricants on Pressure and Load Capacity of Infinitely Wide Exponentially Shaped Slider Bearing

Massachusetts Institute of Technology Department of Mechanical Engineering

Ferroelectrics 342:73-82, 2006 Computational Modeling of Ferromagnetic Shape Memory Thin Films

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

16. Electromagnetics and vector elements (draft, under construction)

Convergence Study for FEM- and FIT-Based Eigenvalue Solvers Applied to a TESLA 1.3 GHz Test Structure

Chapter 6 2D Elements Plate Elements

ACCURACY OF DIRECT TREFFTZ FE FORMULATIONS

Using a C 1 triangular finite element based on a refined model for analyzing buckling and post-buckling of multilayered plate/shell structures

ME469A Numerical Methods for Fluid Mechanics

682 CHAPTER 11 Columns. Columns with Other Support Conditions

Section 11.6: Directional Derivatives and the Gradient Vector

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Differential Equations

Transcription:

NONLINEAR ANALYSIS OF PLATE BENDING CONTENTS Govrning Equations of th First-Ordr Shar Dformation thor (FSDT) Finit lmnt modls of FSDT Shar and mmbran locking Computr implmntation Strss calculation Numrical Eampls Nonlinar Plat Bnding: 1

THE FIRST-ORDER SHEAR DEFORMATION THEORY Displacmnt Fild of th FSDT u (,, z,) t u(,,) t z (,,) t 1 u (,, z,) t v(,,) t z (,,) t u( zt,,,) wt (,,) 3 Nonlinar strains z z w dw d w z dw = d dw = d ij 1 u u i j um um j i i j z Von Karman Nonlinar strains u 1 1 um um u1 1 u1 1 u 1 u3 1 1 1 1 1 1 1 Nonlinar Plat Bnding:

NONLINEAR STARINS OF THE FSDT Actual Nonlinar strains u 1 1 u 3 u 1 w 0 1 z z u 1 u 3 v 1 w 0 1 z z u u u1 u 3 3 u v w w z 0 1 z u u w u u w z z 1 3 0 3 0 z z, z z Virtual Nonlinar strains u w w z z v w w z z 0 1 0 1 u v w w w w z z 0 1 w w 0 0 z z, z z

PRINCIPLE OF VIRTUAL DISPLACEMENTS 0 = W W W I E z Q M N W z z h I = h Ω 0 1 0 1 ( ) ( ) ( z ) K 0 1 0 s z z } 0 K sz z dz dd h WE = ( ) ( ) h nn un zn ns us zs nzw dzds Γ 0 Ω ( q kw) w dd} = N M N M N M Ω 0 1 0 1 0 1 0 0 Qz Q z qw dd ( ) Q M N M M N N Mnn N ns M ns Nnn un Nns us Mnn n Mns s Qn w ds Γ Q n N nn Plats (Nonlinar): 4

THE FIRST-ORDER SHEAR DEFORMATION THEORY @Q @ @Q @ @ @ Equations of quilibrium @ @ @N @ @N @ µ @w N µ N @w @ N @M @ @M @ @N @ @N @ @ N @w @ @w @ @M @ @M @ = I 0 @ u @t = I 0 @ v @t q = I 0 @ w @t Q = I @ Á @t Q = I @ Á @t z z w dw d Strss rsultants w z z dw = d dw = d Z h= µ Q = K s ¾ z dz = K s A 55 Á @w h= @ Z h= µ Q = K s ¾ z dz = K s A 44 Á @w @ h= M = D 11 @Á @ D 1 @Á @ ; @Á M = D 1 @ D @Á @ µ @Á M = D 66 @ @Á @ Nonlinar Plat Bnding: 5

THE FIRST-ORDER SHEAR DEFORMATION THEORY Wak forms Z µ @±u 0 = @ N @±u I @ N I 0 ±u @ u @t dd ±un n ds Z µ @±v 0 = @ N @±v I @ N I 0 ±v @ v @t dd ±vn ns ds Z µ @±w @w 0 = Q N @ @ N @w @ @±w µ @w Q N @ @ N @w @ I I 0 ±w @ w @t ±wq dd ±wq n ds Z µ @±Á 0 = @ M @ I Á ±Á Q I ±Á @t dd ±Á M n ds Z µ @±Á 0 = @ M @ I Á ±Á Q I ±Á @t dd ±Á M ns ds Nonlinar Plat Bnding: 6

Finit Elmnt Modls of Th First-ordr Plat Thor (FSDT) (Continud) Finit Elmnt Approimation u(; ; t) = Á (; ; t) = mx u j (t)ã j (; ); v(; ; t) = j=1 w(; ; t) = mx v j (t)ã j (; ) j=1 nx w j (t)ã j (; ) j=1 px Sj 1 (t)ã j (; ); Á (; ; t) = j=1 px Sj (t)ã j (; ) j=1 Finit Elmnt Modl 6 4 M 11 0 0 0 0 0 M 0 0 0 0 0 M 33 0 0 0 0 0 M 44 0 0 0 0 0 M 55 3 8 >< 7 5 >: Äu Äv Äw ÄS ÄS 9 >= >; K 11 K 1 K 13 K 14 K 15 3 8 9 u K 1 K K 3 K 4 K 5 >< v >= 6 K 31 K 3 K 33 K 34 K 35 7 w 4 K 41 K 4 K 43 K 44 K 45 5 >: S >; K 51 K 5 K 53 K 54 K 55 S = 8 >< >: F 1 F F 3 F 4 F 5 9 >= >; Nonlinar Plat Bnding: 7

Full Dicrtizd Modl and Itrativ Schm Full Discrtizd Finit Elmnt Modl [ ^K] s1 f g s1 = f ^F g s;s1 [ ^K] s1 = [K] s1 a 3 [M] s1 f ^F g s;s1 = ff g s1 [M] s1 (a 3 f g s a 4 f g _ s a 5 f g Ä s ) a 3 = ( t) ; a 4 = t ; a 5 = 1 1 Acclrations and Vlocitis f Ä g s1 = a 3 (f g s1 f g s ) a 4 f _ g a 5 f Ä g s f _ g s1 = f _ g s a f Ä g s a 1 f Ä g s1 whr a 1 = t and a = (1 ) t. Nwton-Raphson Itrativ Schm f g s1 r1 = [ ^K T ] r 1 s1 f ^Rg r ; [ ^K T ] r " @f ^Rg @f g # s1 r Nonlinar Plat Bnding: 8

Stiffnss Cofficints (tpical) Z Kij 11 = Z Kij 1 = K 13 ij = 1 Z µ @Ãi A 11 @ µ @Ãi A 1 @Ã i @ @ @Ã j @Ã i @ @ A 66 @Ãj @ A @Ãi 66 @ µ @w 0 A 11 @ @Ã j @ @Ã j @ @' j @ A @w 0 1 @ dd dd = Kji 1 @' j @ @Ãi A 66 @ Z µ Kij @Ãi = A 66 @ Kij 3 = 1 Z @Ã i @ Z Kij 31 = @Ãi A 66 @ @' i @ @' i @ µ @w0 @ µ @w 0 A 1 @ µ @w0 @ µ @w 0 A 11 @ @' j @ @w 0 @' j @ @ @Ãj @ A @Ãi @ @Ã j @ @' j @ A @w 0 @ @' j @ @w 0 @' j @ @ # dd dd @' j @ # dd @Ãj @ A @w 0 @Ãj 66 @ @ µ @w 0 @Ãj A 66 @ @ A @w 0 @Ãj 1 @ @ # dd Nonlinar Plat Bnding: 9

Tangnt Stiffnss Cofficints (tpical) R T R K F u v w S S 5 n( ) i 1 3 4 1 5 ij =, i = ik k i, i i, i i, i i, i i, = = = = i = i j = 1 k= 1 K T K F K ( ) 5 n( ) 5 n( ) ik ij = ik k i = k ij j = 1 k= 1 = 1 k= 1 j T = K = ( K ), T = K = ( K ) 1 1 1 T T T = K = ( K ), T = K = ( K ) 4 4 4 T 5 5 5 T K K T K w K 5 n( ) 1 n 13 13 ik 13 ik 13 ij = k ij = k ij = 1 k= 1 wj k= 1 wj (1) () () 1 i w j w j = A 11 A1 Ω (1) () () i w j w j A66 dd K = K K = K = T 13 13 13 31 ij ij ij ji Plats (Nonlinar): 10 13 ij

Tangnt Stiffnss Cofficints (tpical) 5 n( ) 3 n( ) 31 3 33 33 33 K ik 33 Kik Kik K ik Tij = Kij k = Kij uk vk wk = 1 k= 1 w j k 1 wj wj w = j () () () () () () () () 33 i j i j u i j i j u = Kij A11 A1 A 66 dd Ω () () () () () () () () i j i j v i j i j v A 1 A A66 dd Ω () () () () () () () () w i j w i j w w i j i j A11 A A66 Ω () () () () () () () () 1 w i j w i j w w i j i j ( A1 A6 6 ) dd Plats (Nonlinar): 11

Tangnt Stiffnss Cofficints (tpical) () () 33 33 u w v 1 w i j Tij = Kij A11 A1 ( 1 66 ) A A dd Ω () () v w u 1 w i j A A1 ( A1 A66 ) dd Ω () () () () u v w w 1 w w A66 i j i j ( A1 A66 ) dd Ω () () () () 33 i j i j () () Tij = A55 A44 ki j dd Ω () () () () () () () () i j i j i j i j N N N N Ω () () () () w w i j i j ( A1 A66 ) () () () () w w i j w w i j A11 A66 A66 A dd 1

Shar and Mmbran Locking (Rvisit) Shar Locking Us rducd intgration to valuat all shar stiffnsss (i.., all K ij that contain transvrs shar trms) Mmbran Locking Us rducd intgration to valuat all mmbran stiffnsss (i.., all K ij that contain von Kármán nonlinar trms) Nonlinar Plat Bnding: 13

Post-Computation of Strss Componnts Q Q 0 11 1 z Q55 0 z Q1 Q 0, z 0 Q 55 z 0 0 Q 66 E E E Q, Q, Q, Q G, Q G, Q G, 1 1 11 1 111 111 111 66 1 44 3 55 13 u 1 w w v 1 w z z, z w u v ww Plats (Nonlinar): 14

TYPICAL SIMPLY SUPPORT CONDITIONS for Pur Bnding cas CPT: FSDT: CPT: w w 0 w 0 Smmtr conditions: b b w w 0; FSDT: w 0 w CPT: w 0 FSDT: w 0 Computational domain w a a CPT: w 0 FSDT: w 0 w w CPT: 0 at 0; 0 at 0 FSDT: 0 at 0; 0 at 0 Plat bnding: 15

Th ffct of rducd intgration, thicknss, and msh rfinmnt on th linar cntr dflctions and strsss of a simpl supportd, isotropic (ν = 0.5) squar plat undr a uniform transvrs load of intnsit q 0. F full intgration M Mid intgration 1 1 4 4 linar linar linar quadratic Eactz a=h Intg. ¹w ¹¾ ¹w ¹¾ ¹w ¹¾ ¹w ¹¾ ¹w ¹¾ 10 F 0.964 0.018.474 0.119 3.883 0.16 4.770 0.90 4.791 0.76 M 3.950 0.095 4.71 0.35 4.773 0.66 4.799 0.7 0 F 0.70 0.005 0.957 0.048.363 0.138 4.570 0.68 4.65 0.76 M 3.669 0.095 4.54 0.35 4.603 0.66 4.633 0.7 40 F 0.070 0.001 0.79 0.014 0.944 0.056 4.505 0.70 4.584 0.76 M 3.599 0.095 4.375 0.35 4.560 0.66 4.59 0.71 50 F 0.005 0.000 0.18 0.009 0.65 0.039 4.496 0.67 4.579 0.76 M 3.590 0.095 4.47 0.35 4.555 0.66 4.587 0.71 100 F 0.011 0.000 0.047 0.00 0.18 0.011 4.48 0.66 4.57 0.76 M 3.579 0.095 4.465 0.35 4.548 0.66 4.580 0.7 CPT(N) 5.643 0.60 4.857 0.74 4.643 0.76 4.570 0.76 CPT(C) 4.638 0.6 4.574 0.7 4.570 0.75 4.570 0.76 ¹w = weh 3 10 =q 0 a 4, ¹¾ = ¾ (A; A; h)h =q 0 a, A = 1 4 a (1 1 linar), 1 8 a ( linar), 1 a (4 4 linar), 0:0583a ( 16 quadratic). Plat bnding: 16

Gauss Point Locations (basd on rducd Intgration Gauss points) for Strss Computation ( a / ) ( a/ 83, b/ 8) ( 3a/ 83, b/ 8) ( a/ 8, b/ 8) ( 3a/ 8, b/ 8) ( b/ ) ( a / ) ( b/ ) Msh of 4-nod (linar) lmnts Msh of 9-nod (quadratic) lmnts b( 3 1) b( 3 1), = ( 0. 0583a, 0. 0583b) 8 3 8 3 Plat bnding: 17

REMARKS Th nin-nod lmnt givs virtuall th sam rsults for full (3 3 Gauss rul) and mid (3 3 and Gauss ruls for bnding and shar trms, rspctivl) intgrations. Howvr, th rsults obtaind using th mid intgration ar closst to th act solution. Full intgration givs lss accurat rsults than mid intgration, and th rror incrass with an incras in sid-to-thicknss ratio (a/h). This implis that mid intgration is ssntial for thin plats, spciall whn modld b lowr-ordr lmnts. Full intgration rsults in smallr rrors for quadratic lmnts and rfind mshs than for linar lmnts and/or coarsr mshs. Plat bnding: 18

u = w = = b Nonlinar Analsis of Simpl Supportd Plat (SS-1) 0 SS-1 v = w = = 0 Dflction vrsus load paramtr for simpl supportd (SS1) plat undr uniforml distributd load. 3.0 b.5 a a v = w = = 0 u = w = = 0 v = w = = b b 0 SS- u = w = = 0 Dflction, w/h.0 1.5 1.0 0.5 SS SS1 u = w = = a 0 a v = w = = 0 0.0 0 50 100 150 00 50 Load paramtr, P Nonlinar Plat Bnding: 19

Clampd Circular Plat undr UDL w 0 /h Dflction, 4.0 3.0.0 E = 10 6 psi, ν = 0.3 a = 100 in., h = 10 in. u = 0, φ at = 0 = 0 E = 10 6 psi, ν = 0.3 h = 10 in. 9 4 8 19 7 14 6 9 4 3 5 1 5 10 15 0 a = 100 in. v = u = w = = = 0 0 φ φ on th clampd dg v = 0, φ = 0 at = 0 1.0 Msh of 5-Q9 lmnts 0.0 0 0 40 60 80 100 10 Load paramtr, (q 0 a 4 /Eh 4 ) Plats (Nonlinar): 0

Simpl Supportd (SS) Orthotropic* Plat, 0 ( ) 0.50 0.40 Eprimntal [8] CLPT FSDT Gomtr and Matrial Proprtis a = b = 1 in, h = 0.138 in E 1 = 3 10 6 psi, E = 1.8 10 6 psi G 1 = G 3 = G 13 = 0.37 10 6 psi ν 1 = ν 3 = ν 13 = 0.3 0.30 0.0 0.10 Linar Nonlinar [8] Zaghloul, S. A. and Knnd, J. B., ``Nonlinar Bhavior of Smmtricall Laminatd Plats, Journal of Applid Mchanics, 4, 34-36, 1975. 0.00 0.0 0.4 0.8 1. 1.6.0 Prssur, q 0 (psi) Nonlinar Plat Bnding: 1

Dflction vs. load paramtr for plats undr uniforml distributd load w Dflction, 3.0.5.0 1.5 1.0 0.5 0.0 w qa 0 0 w =, P = h Eh SS-1 (FSDT) SS-1 (CPT) SS-3 (CPT) SS-3 (FSDT) 0 50 100 150 00 50 Load paramtr, P 4 4 σ Strsss, 4 0 16 1 8 4 0 a = Eh SS-1 (FSDT) SS-3 (FSDT) SS-1 (CPT) SS-3 (CPT) Mmbran strsss 0 50 100 150 00 50 Load paramtr, P Nonlinar Plat Bnding:

Cntr Dflction vs. Tim for a Simpl Supportd Isotropic Plat Undr Suddnl Applid Uniforml Distributd Prssur Load Cntr dflction, w0 (cm) 1.80 1.50 1.0 0.90 0.60 0.30 0.00-0.30-0.60-0.90 0 30 60 90 10 150 Tim, t (s) (ms) a = b = 43.8 cm, h = 0.635 cm, ρ ρ =.547 10-6 N-s /cm 4, E 1 = E = 7.031 10 5 N/cm, ν 1 = 0.5 q 0 = 4.88 10-4 N /cm, t = 0.005 s = 5ms Figur 13.4 1 (SS-) q0 (N/cm ) 10 8 6 4 0 0.0 0.4 0.8 1. 1.6 Dflction, w 0 (cm) q 0 ( t = 5.0 ms) q 0 ( t = 5.0 ms) 5q 0 ( t =.5 ms) 10q 0 ( t =.5 ms)

SUMMARY In this lctur w hav covrd th following topics: Govrning Equations of FSDT Finit lmnt modls of FSDT Tangnt stiffnss cofficints Shar and mmbran locking Programming aspcts (including strss computation) Numrical ampls Nonlinar Plat Bnding: 4