. Since P-U I= P+ (p-l)} Aap Since pn for every GF(pn) we have A pn A Therefore. As As. A,Ap. (Zp,+,.) ON FUNDAMENTAL SETS OVER A FINITE FIELD

Similar documents
BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

On Absolute Indexed Riesz Summability of Orthogonal Series

2.Decision Theory of Dependence

Generalized Fibonacci-Type Sequence and its Properties

Extension of Hardy Inequality on Weighted Sequence Spaces

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam I Feb. 14, 2005

On Almost Increasing Sequences For Generalized Absolute Summability

). So the estimators mainly considered here are linear

Physics 232 Exam I Feb. 13, 2006

For this purpose, we need the following result:

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

Example: Two Stochastic Process u~u[0,1]

Fractional Fourier Series with Applications

X-Ray Notes, Part III

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

Meromorphic Functions Sharing Three Values *

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

1 Notes on Little s Law (l = λw)

P a g e 5 1 of R e p o r t P B 4 / 0 9

Generalisation on the Zeros of a Family of Complex Polynomials

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

The Complete Graph: Eigenvalues, Trigonometrical Unit-Equations with associated t-complete-eigen Sequences, Ratios, Sums and Diagrams

Spectrum of The Direct Sum of Operators. 1. Introduction

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

T h e C S E T I P r o j e c t

Primal and Weakly Primal Sub Semi Modules

SOLVED EXAMPLES

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

PROGRESSION AND SERIES

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Chapter #3 EEE Subsea Control and Communication Systems

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

On the k-lucas Numbers of Arithmetic Indexes

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

Types Ideals on IS-Algebras

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

A Fermionic ITO Product Formula

Valley Forge Middle School Fencing Project Facilities Committee Meeting February 2016

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

Chapter 2 Infinite Series Page 1 of 9

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

A L A BA M A L A W R E V IE W

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

CAT. NO /irtl,417~ S- ~ I ';, A RIDER PUBLICATION BY H. A. MIDDLETON

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Supplement: Gauss-Jordan Reduction

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Summary: Binomial Expansion...! r. where

On Fractional Operational Calculus pertaining to the product of H- functions

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

Visit to meet more individuals who benefit from your time

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

MATH Midterm Solutions

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Department of Mathematical and Statistical Sciences University of Alberta

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

Congruences for sequences similar to Euler numbers

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

The Structure of Z p when p is Prime

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

On Some Integral Inequalities of Hardy-Type Operators

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

2012 GCE A Level H2 Maths Solution Paper Let x,

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Generating Function for Partitions with Parts in A.P

CHAPTER 2 Quadratic diophantine equations with two unknowns

S n. = n. Sum of first n terms of an A. P is

Conditional Convergence of Infinite Products

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

We will look for series solutions to (1) around (at most) regular singular points, which without

Review of the Riemann Integral

UNITARY HARMONIC NUMBERS. CHARLES R. WALL Trident Technical College, Charleston, SC (Submitted October 1981) 1. INTRODUCTION

Hadamard matrices from the Multiplication Table of the Finite Fields

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Review for the Midterm Exam.

«A first lesson on Mathematical Induction»

Transcription:

Ie J Mh & Mh Sci Vol 8 No 2 (1985) 373-388 373 ON FUNDAMENTAL SETS OVER A FINITE FIELD YOUSEF ABBAS d JOSEH J LIANG Dee of Mheic Uiveiy of Souh Floid T, Floid 33620 USA (Received Mch 3, 1983) ABSTRACT A iio ove fiie field i defied d ech equivlece cl i couced d eeeed by e clled he fudel e If iiive elee i ued o couc he ddiio ble ove hee fudel e he ll ddiio ove he field c be coued The ube of iio i give fo oe fiie field KEY WORDS AND HRASES Fiie field, iiive olyoil 19B0 MATHETICS SUBJECT CLASSIFICATION CODE 12C99 i INTRODUCTION Thoughou,q will be fixed bu biy ie Le E GF() > 1 d defie A A {, +l, +2, =+ (-l)} If B E A, he A A Defie 2A, 3A (-l)a uch h A {x/x A} 1,2,,- I, hu A A DEFINITION * A D 1 =i,,, Noe h if 8 6 Ae, he A AS" A= {x/x DEFINITION A fo 0,i 2 o, A, +I, A ( C ( + (-l)} A Sice fo evey GF() we hve A A Theefoe -U I= he vlue of i he defiiio c be liied o 0,1,2,,-i DEFINITION DEFINITION A, * A (A -l A,A Sice (Z,+,) hu X { 3 +bl Z* b Z d j E Z } LEMMA ii If 8 EX, he X A--B ROOF If 8 6 A he hee exi 6 Z b 6 Z d J Z uch h 8 j + b Thi ilie 8C -1 o A A8" i field d 0 boh

374 Y ABBAS AND J J LIANG DEFINITION A will be clled Fudel Se Sice A A fo evey E GF(), hee exi le oiive iege <_ A * uch h A fo oe 6 Z I follow h A *A DEFINITION Le u,8 E GF() We defie he elio i GF() 8 iff A AB THEOREM ii Fo Le ii he elio i equivlece elio Thi equivlece elio will iio he field GF() io equivlece cle A d ech cl i eeeed by fudel e DEFINITION A will be clled Fudel Cl _ i Le 8 be iiive elee i GF() Sice, 8 -I i iiive i Z, he fo evey Z hee exi k whee i < k < - i So, k c be deeied eily If he elee of he fudel e A e exeed owe of 8, he c be exeed fo A owe of 8 So o clcule he ddiio ble of A i i ufficie o hve he ddiio ble of A Theefoe, if AI,A2,,A=, e ll he fudel cle i GF(), i will be eough o bule oly he ddiio ble ove A,,A wih eec o 8 o do ll he clculio ove i GF(), If fo oe GF(), i he le oiive iege uch h + b fo oe Z d b Z he i i ue h will be he lle oiive iege fo evey B uch h B B+ b whee b E Z Thi will be how below DEFINITION Le GF(), if i he le oiive iege uch h + b fo oe Z * b Z he i clled he idex of d i he coefficie of d we y h idex wih coefficie If = Z we y h idex 0 wih coefficie i LEMMA 12 If h idex wih coefficie, he evey 8 A h he e idex d he e coefficie ROOF Le B wih idex d B Z Thee exi E Z 6 Z d j Z uch h 8 J + 6 Thi ilie 8 ( j + 6) ( + b) j + 6 + c whee c Z Theefoe _< Bu fo Le ii we hve A A 8 Hece A Theefoe <, which ilie 8 h idex wih coefficie DEFINITION The fudel e A h idex wih coefficie if d oly if i he le oiive iege uch h A A THEOREM 12 If h idex wih coefficie he A h idex wih coefficie d ech fudel e A C h he e idex wih he e 8 A coefficie ROOF Follow fo Le 12 Fo he bove heoe we c defie he idex A o be he idex of y elee o y fudel e icluded i A Now, we w o dicu oe oeie of he idex d he coefficie of he fudel e -i

FUNDAMENTAL SETS OVER A FINITE FILED 375 THEOREM 13 I GF(), if A h idex d coefficie he dfvlde d / I ROOF Le +, 0 < < Sice + b, fo oe be Z we hve -2 -i -2 () + ( -I + ++ l)b d ( ) - + ( + + + l)b So A A which ilie 0 d / i THEOREM 14 Le A be fudel e wih idex d coefficie If * / A ba, b E Z he divide d b ROOF Sice i he idex of A, we hve < Le k +, 0 _< < If A, he hee exi 6, 6 Z uch h + 6 d b+ 6 Bu k, b+ 6 ( ) (ko + 6 ) + 6 k + 6" Thi ilie > Theefoe 0 Hece l d b Noe: Sice ll fiie field of he e ode e ioohic, if i E GFI() hvig idex wih coefficie, i he ige of h idex wih coefficie Thee- 2 GF2() ude ioohi o, he 2 foe; GFl() d GF2() elio hve he e iio wih eec o he equivlece EXAMLE: Le F GF(52) d 8 be iiive elee i F uch h 8 ifie he iiive olyoil idexig olyoil], (x) x 2 + 4x + 2 The field F h wo equivlece cle, Z d A 5 8 {8, 8 + i 822 8 + 2 815 8 + 3 82 817 Sice 86 2, he 4 812 d - 8 + 4 817 So, we hve 8 8228/ 815 82 3 818 Theefoe, 2A 8 {8 7 87 + 2 8 4 87 + 4 =821 87 + 1 88} 3A 0 {019 019 + 3 016 019 + i 0 I0 019 + 4 821 019 + 2 06 4A 8 {813,813 + 4 810,813 + 3 83, 813 + 2 814, 813 + I 85 5 d A 4A 8 8 2 SOLUTIONS OF EQUAl IONS OF THE FORM A A To udy he fudel e i GF() wih idex <, we hve o udy he, x * x oluio of: () x + 6; Z # i, 6 E Z d (b) x + 6; 6 Z i GF() Noe: If 6 0 i (b), he ll he elee of he ubfield GF() will ify (b) We will ow coide he oluio of x x + 6 (21), whee 6 Z, # 1 d 6 Z LEMMA 2 i Equio (2 i) h oluio e Z wih idex oly if divide d i The oof i diec licio of Theoe 13 d Theoe 14 LEMMA 22 I equio (21), fo y x + -1 we hve y y ROOF )=x y (x + + x + 6 + y -i 6 --- (y- _l + -i

376 Y ABBAS AND J J LIANG y Theefoe, o udy he oluio of (21), i i ufficie o udy he oluio of y LEMMA 23 x i - oluio of equio (21) If 0 i iiive elee i GF(), he he followig ee e ue: -i () 0 -I Z -I k * 1 (b) Fo evey Z hee exi iege k uch h 0 whee 0 < k < -i If i, k # 0 LEMMA 24 Fo evey uch h divide d i i i iege, k ROOF Le k So, l(od k) d -i -i -i, he I / 1 k-2-1 (o) -I (o)k- + (o) + I Sice -= l(od k), we hve J l(od k) fo j 1,2 Theefoe, k-i ()j 0(od k) Hece _ i j=o 1 I LEMMA 25 If / i, 1 d ROOF Bu, fo Le 24 -! -k / - i 0 k _ -i -i -i -i i i / 1 _(/) k / I k -1 he -i i iege -i -i -l_k i iege Alo, 0 - i ilie i Theefoe, -I k 0 od(-l) So -i k -i THEOREM 21 Give x x (22) whee, i d 0() he () Equio (22) h oluio i GF() d Z O (b) If i oluio of (2 2) whee O i iiive i GF(), he k 1 (od -!) -1 -I -I (c) x 0 i he oly oluio of (22) i Z ROOF () If x Z he x x x Theefoe x O (b) Sice x x d # i, he x _GF() (c) If O i oluio of (22) he (o) -I -i k == 8 -i Thu, i (- i) =- k (od I) -i which ilie k _ 1) 1 (od -i -i -i I follow fo Le 25 h he bove coguece i eigful

(22) THEOREM 22 FUNDAMENTAL SETS OVER A FINITE FIELD 377 Fo evey k i k -i _ i) (od O i oluio of I -I -i ROOF Le -i + j j 0,1,2, he -I -i -I _l _ i -k (S) o -I (8-l)j I So, (O) O Now coide he oluio of x x + 6 (23) whee # i, Z 6 Z, l d 0() Fo Le 22, Theoe 21 d Theoe 22, we hve O + - 6 i oluio of (23), whee k -I (od d i he oly oluio i Z -i -i "-i THEOREM 23 Le A be fudel e i GF() wih idex d coefficie d i If A i o icluded i y oe ubfield of GF(), he O() l(- i) ROOF Le 0() d d u A I follow dl d h idex wih coefficie Thu, + fo oe 6 6 Z Hece d d + (ed-1 + d-2 + + 1)6 Theefoe 6GF(di), which ilie GF(d) GF() d d COROLLARY 21 Le X X + 6 (24) uch h i, 6 Z l, 1 d O(), he equio (24) h oluio i GF() d ll he oluio e icluded i GF() ROOF GF() i ubfield of GF() Equio (24) ifie he codiio of Theoe 21 ove GF() d if u i oluio, he u -1-2 GF() u + ( + + + 1)6 + O Theefoe -1 Noe: If 8 i iiive elee i GF(), he y 0 -i i iiive elee i GF() Theefoe, he oluio of equio (24) e of he fo: k y + whee 1 (od -1 0-1 -1 1 1 k d 7 1 Sice -1 -I k -1 -i -I -i -I,we hve 8 (8 O -I k -I k -l k So, k k Theefoe, he oluio of (24) ove GF() e of he fo 8 + i_-, whee k!) -I -1 -l- (od -i -i -i

_ 378 Y ABBAS AND J J LIANG LEMMA 26 Equio (24) h oluio i GF() ROOF Coolly 21 iue h equio (24) h oluio i GF() -I -i Fo he eviou oe, Theoe 21 d Theoe 22 we hve 8-1 0 d 0 + i oluio d if H {0 B + lgf()} he i oluio of (24) I i cle h H h elee O()[ THEOREM 24 Fo evey divide d evey E Z 1 uch h hee exi fudel e i GF() wih idex d coefficie ROOF By Le 26, x x h oluio i GF() If e i _ -1 ok iiive elee i 6F() he 0-1 i oluio We cli h h idex wih coefficie To ove hi, we ue h idex wih coefficie b, heefoe by Theoe 14 d Theoe 22 we coclude h i oluio of x bx d i i of he fo e whee So, hee exi j whee j > 0 uch h: -1-1 -1-1 -1 _ od 1) -I -I -I -i k he 0 _< j o_ ll_ 1 Sice _ i_ > k < - 1 d i _< we will hve -i d hi i codicio 0 <_ J < _-- Hece A--A i fudel e wih idex d coefficie COROLLARY 22 The iiu ubfield which coi ll he oluio of equio (24) i GF() ROOF The oof i diec licio of Theoe 13 d Theoe 24 he We will ow eview oe kow fc bou he oluio of x x + b i field GF() Le x x + b, whee b EGF() (25) d d gcd (, ) d The followig heoe wee give i [i] LEMMA 27 If x 0 i oluio of (25) i GF(), he fo evey d 8 -i j i, 2,, -i, x 0 + i oluio of (25) whee 8 i iiive elee i GF()

FUNDAMENTAL SETS OVER A FINITE FIELD 379 -i ROOF THEOREM 25 THEOREM 26 d d Xo + 8 -i x + (O i _ (x0+b) + e -I Xo + e 1 + b d The ube of oluio of (25) i GF() i ehe 0 o Equio (25) h oluio i GF() if d oly if, If we ue divide d b Z i he equio x x + b he we c coclude he followig: () (b) d g- c- d(), fo evey b E Z we hve E ffio b=--b=o (26) if d oly if divide Now, we c ee he followig heoe: () Theoe 27 Equio (26) h oluio i GF() if d oly if divide (b) Theoe 28 If equio (26)h oluio i GF(), i h oluio, lo if x 0 i oluio he x 0 + 0-1 j 0,1,, -i i oluio whee 0 i iiive i GF() THEOREM 29 If (26) h oluio i GF(),he, he iiu ubfield h coi ll he oluio i GF() ROOF Sice equio (26) h oluio d divide he by Theoe 27 divide heefoe GF(o) i ubfield of GF() If i oluio of (26), he we hve + b, which ilie = + b = o = GF(o) d GF()[b#0] Le GF( Z) be he iiu ubfield which coi ll he oluio of (26) heefoe GF() C GF() d # Thi ilie [ Bu ice equio (26) h oluio i GF() d by Theoe 25 d Theoe 26, g c d(,) Hece, Theefoe, LEMMA 28 If i oluio of (26) i GF() whee h idex wih coefficie he divide d i

380 Y ABBAS AND J J LIANG ROOF Theoe 1 4 ilie SIR Le _ Aue # 1 d + 6 fo SORe E Z heefoe + -i + -2+ +i) -i -2, e + b Hece 1 d + + + 1 0 which ilie b 0, bu hl codic he codiio b 0 of equio (26) COROLLARY 23 I GF(), fo evey divide d divide hee exi (-l) elee e whee 6 A uch h A A d A GF() * ROOF Equio (26) h oluio ove GF() fo fixed b Z d hee e -i diffee vlue fo b COROLLARY 24 I GF(), if i ie, he ll oluio of (26) hve idex wih coefficie i ROOF Thi i diec coequece of Le 28 THEOREM 210 I equio (26) if divide he hee exi whee i oluio of (26) d h idex wih coefficie i ROOF Sice he (26) h oluio Alo by Le 28, if h idex wih coefficie 1 whee ir, he iie x x + i (27) whee 6 --_ (b), hece l d By Theoe 27 d Theoe 28 equio (27) h oluio Le {Sl, 2, } be he e of ll he idice of he oluio of (26) uch h 1 _< < i j < R fo evey I < j Sice _< whee i he gee iege le h o equl o we hve Sl 2 < + + + < + 2 + -1 Bu k+l k+l ice < 2k fo k > i d < -I -I 2k + i we hve d hi i codicio R < -i COROLLARY 25 I GF(), fo evey divide, d divide hee exi fudel e wih idex d coefficie I 3 THE TOTAL NUMBER OF FUNDAMENTAL CLASSES IN SOME FINITE FIELDS I hi ecio we will iveige he ol ube of fudel cle fo oe ecil fiie field Fo he eviou udy we coclude h If hee exi fudel e wih idex d coefficie 1 i GF() * I GF(), fo evey divide, d evey Z # 1 whee 1 hee exi fudel e wih idex R d coefficie Sice 1 he he -l) # i g c d( If A i fudel e wih idex he A h (- l) elee

FUNDAMENTAL SETS OVER A FINITE FIELD 381 I hi ecio we will ue he followig oio: () 0() Nube of fudel cle i GF() (b) A() Nube of fudel cle i GF() bu o i y oe ubfield of GF() (c) %(,,) Nube of elee i GF() wih idex d coefficie d oe of hee elee belogig o y oe ubfield of GF() (d) E(,) {x x + Z Z d 0 if 1} " (e) SE(,,) i he e of ll oluio of he equio of E(,) i GF() bu o i We hll iveige i he followig he ube of fudel cle i GF( q ), whee q -l, d q @ +l q [q-l] LEMMA 31 If q- l,he q divide i fo evey 0,i,2, ROOF We will ove hi 1e by iducio By Fe Theoe he le, i ue fo O Aue i i ue fo he q [q-l]_ i (qs[q_l]) 1 [ q-i q-2 (q [q-l] 1) (q [q-l]) + (q [q-l]) + + [q [-ll, 11 (q [q-1]) ]--1 q Sice q [q-l] i ood q, he (q [q-l]) E i (od q) fo eve J 0,I q So, (q [q-l]) j=l +l [q_l] [q 1] S +2 q (od q) -= 0 (od q) which ilie q divide +l LEMMA 32 I GF( q whee q-1 d q #, we hve A(+l) q [q [q-l]_l] +l (-l)q, ROOF Sice g c d(q,-l) l,he fo evey 6 Z, whee @ I, q I fo evey O, heefoe equio (26) d equio (27) hve o oluio i +l +l h GF( q fo evey q h > 0 Hece evey elee i GF( q bu o i +l +l GF( q h dex q which lie h evey fudel e i GF( q bu o +l i GF( q lo h idex q So: +l A(+l q _q q [_q_ [q-if_ 11 +l +l (-l)q (-l)q Fo Le 31 d g c d(-l,q) 1 we hve A( +l) i iege COROLLARY 31 I GF( q) whee g-l, q we hve: I] O(q) i +------= i + (- l)q (q-l_ I) (-l)q (31)

382 Y ABBAS AND J J LIANG +l +l Sice O( q O( q + A( q we coclude h: -1 +l O( q 1 + A( q --O -i q i + [q [q-l] =0 (-l)q+l whee q-i, q # We hll ow udy he ube of fudel cle i GF( ) By Theoe 27, Theoe 28 d Theoe 29, he equio, whee b Z d < h +l GF( ) oluio d ll oluio e icluded i LEMMA 33 All he oluio of (32) hve idex ROOF Le be oluio of (32) d h idex We hve k fo oe k x x + b (32) k < d + c fo oe c o oluio of (32) +l COROLLARY 32 I GF( bu o i GF( ), hee e (-l) elee +l wih idex So x( I) (-l), ROOF Fo fixed b E Z equio (32) h oluio d we hve (-l), elee i Z +l +l COROLLARY 33 If e E GF( bu GF( ) he h idex o whee > I COROLLARY 34 Fo > i; A ( +l) (_l) + (-l) (_l) +l +l (-l) (-l) +l + --i (-I)-I-I --I [ (-I)-I_I (-l) + i (33) ] I GF(), he equio x x + b, (34) whee b 6 Z h oluio d ech oluio h idex Theefoe hee e (-l) elee i GF()-z wlh idex Thi ilie: LEMMA 34 O() i + + -(-l)-_ (-l) (-l) (35)

FUNDAMENTAL SETS OVER A FINITE FIELD 383 COROLLARY 35 -i +l O( 2 + + A( (36) l I wh follow we will udy he ube of fudel cle i GF( "q whee q-i, q d, > I Sice q-i he fo eve divide -q d eve E Z wih i, we "q hve i So, Theoe 13 ilie h SE(,, q) fo evey # 1 d evey l q By Theoe 27, Theoe 28 d Theoe 29, we coclude he followig: LEMMA 35 Fo evey d h; 0 < < -i, 0 < h <, SE(qh, I, Sq) h h (-l) "q elee, ll of he e coied i he iiu ubfield +l h h GF( q d SE(qh, i, Sq)N GF( "q LEMMA 36 Fo evey, h uch h 0 < < -i, 0 < h < -i, SE(qh 1 Sq4) i icluded i SE(qh+l 1 Sq) qh ROOF (qh, Sq), Le u q SE I, The u + 6 fo oe q Z h which ilie u "q + I u + [q ], whee [x] i he le oegive eidue of x od Sice [q- ] 0 he SE( h+l q i, Sq) I i cle h if u SE( q h, 1, Sq),he u h idex q fo oe 0 < < h Sice, SE(, i, Sq A) C SE( q, i Sq) C C SE (qh+l, i Sq) we coclude h +l h+l h+l h+l h X( "q q I) (-l) "q +l h+l Theefoe, i GF( q hee e hi qh (_l) "q [q-l] h h _ h h (_l) "q [ "q [q-l]_l ]= "q [ (-I) q "q q [q-l] h+l +l h+l h+l fudel cle wih idex q Fo Le 31 d he fc h + i, he ube give i (38) i iege +l h+l h+l Sice y oe ubfield of GF( "q i ubfield of GF( "q o +l h +l h+l GF( "q ) So, i GF( "q ), he ube of fudel cle wih +l h+l idex "q i equl 6 q _ q _ q + q _(_l) q [-q [q-l] +l h+l h+l +l h h h h +l h+l (-l) q +l h +l h h h Theefoe, we hve he followig q [ q [q-l]_l]_ -q [-q [q-l] h+l (-l) +l q -1]- I: (37) (38) (39)

384 Y ABBAS AND J J LIANG THEOREM 311 I GF( "q ), Fo i follow h +l ( "q +l (38) + (39) +l h+l +l h+l +l h O( "q ( "q + O( "q h+l h + O( "q O( "q (310) We ow udy he geel ce, ie he ube of fudel cle i GF() Fi, le i 2 ql q2 q uch h i # 0 gi-i d qi # fo evey i 1,2 of Le N(,) be he ube of elee i GF( ) bu o i y oe ubfield GF (S) THEOREM 312 The ube N(,) (i)q j whee i he Mblu fucio (See [2]) i-j=, Sice fo evey divide d evey E Z he e SE(,,) I ilie h if EGF (k) whee GF (k) i ubfield of GF() d doe belog o y oe ubfield of GF(k), he = h idex k So, we hve he followig THEOREM 313 If GF(k) C GF() he A(k) N(k,) k (-l) k i 2 Now le ql q2 q uch h k # O, qi # " qi2-i fo evey i 1,2,, # 0 d i l LEMMA 3 7 Fo evey 2 ql q2 q whee 0 < < k-l, 0 _< _< i i i 1,2,, he SE(,l,) h (-l) elee, ll of he e coied i he iiu ubfield GF(o) d SE(,l,) N GF() Sice SE(,l,)C GF(), we hve SE(,l,) SE(,l,) LEMMA 38 Fo evey 1 "ql q whee 0 < < k-i, 0 < < i i fo i 1,2, d fo oe < -i, SE(,l,) i oe ube of SE(q,l,) LEMMA 39 If k divide, d divide he SE(,l,) COROLLARY 36 If SE(ql,l,) # d SE(q2,1;) # fo oe I # 2 he SE,l,) # (ql SE(q 1 ) 2 The oof i iedie licio of Le 37 COROLLARY 37 If divide bu o, he SE(,l,) f SE(,l,) +l The oof i diec licio of Le 37 COROLLARY 38 If fo oe 0 < < k-i l d I bu +l 2 d he whee (e,)= g- c d(,) SE(,l,) SE(,l,) SE((,),l,) The oof i diec licio of Le 37, Coolly 36 d

FUNDAMENTAL SETS OVER A FINITE FIELD 385 Coolly 38 We kow fo Theoe 210 if divide d SE(,l,) @ he hee i SE(,l,) uch h h idex We w o fid he ube of elee i ll 12 lh SE(,l,) wih idex Le ql I "q12 q d divide whee 0 _< _< k- i, I # 0 fo l,,h d h < If we ege he q i he fcoizio of uch h ql q fo 1,2,,h, he SE(,1,) h fo evey i 1,2,,h, d i=in SE(--" 1,)qi, SE(ql q2 qh l, ) We hll ue he followig oio fo he eiig of hi ecio: i 2 h "ql q2 qh 1 < d h h I qi 2 i=l qi = qil qi2 h i<j qiqj 1 < i I i 2 < i h d qi q + fo i j=l j j =l l-i 2-1 h-1 If > h he we defie O Theefoe h "ql "q2 qh Fo eviou Le, we coclude he followig If R[SE(,I,)] i he ube of elee i SE(,l,) wih idex he R[SE(,I,)] I + 2 3 + + (-l) + + (-i) h h Alo, if B GF() d o i y oe ubfield of GF(), he B h idex o Hece we hve he followig THEOREM 3]4 &() R[S(,l,)] (,)-R[S(,l,)] (-l) (-l) (311) (3 12) To deeie he ube of equivlece cle i GF( q whee ql-l, we eed o udy SE(,,q fo ll dividig q d Z * Fo Theoe 27 we hve SE(M,l,q ) fo evey lq Alo we kow h fo evey lq d evey # I,, S/ Z if q i he SE(, qs) h (-l) elee Oe queio we will y o we fi i h fo give, i hee Z # I q/ uch h I d he how y uch i Z c oe fid? Aohe queio i fo fixed d, how y, e hee uch h SE(,,q E(,,q ) LEMMA 310 I Z if qv divide (-l) he hee e q (q-l) elee of v ode q ROOF Le b be iiive elee i Z Aue fo oe k; k I, b k i oluio x q i Thi ilie k-q 0 od(-l) So, k - -!_ fo oe q

386 Y ABBAS AND J J LIANG 1,2,,q-l Bu lo if -1 fo evey 1,2,,q-I we hve q -(b) q b -I" I d b # 1 which ilie h i Z we hve (q-l) elee of ode q Le i q h whee he g c d(-l,h) I, he fo evey uch h 0 od(q -v h) d 0 < < qv b qv we hve i oluio of x I, which I qv ilie h i Z hee e qv- elee uch h x i d x 1 Fo v I, v 2 2 we will hve q I- (q-l) q(q-1) 2 elee of ode q The e fo v I, v we will hve q i (q-l-l) q-l(q-l) elee of ode q LEMMA 311 I Z if fo fixed b whee O(b) q d i < < hee exi of ode qv whee _> v > d ifie x qv- b (313) he hee e qv- diic elee i Z * of ode qv ifyig (3]3) ROOF Noe h equio (313) h o eeed oo If i oluio, we cli h, q+l 2q+l (qv--l) q-i e diic oluio of (313) To v iq+l v-u_l ove ou cli, fi ice O() q he fo 1,2 q e q+l qvdiic c,l, i Z Alo ( -q qv- i b b Sice v q+l) v THEOREM 3]5 If b f Z,ch h O(b) q- 0 < v <, v-d v _> v, hee e q e]l of od, d ifyig (3]3) v- v- qv-v x q-l(q-l) diic d of ode q fo which he bove equio i v-i- g c d(qu+ l,q) 1 d O() q we ve O( q fo evey v, v-i v v ROOF I Z we hve q (q-l) el,e of ode q Le c e z d 0(c) q d le c q d o d # 1 d d q i Fuheoe, he ode of d i q By Le 311, we hve q elee ifyig d fo ech d Bu hee e _q q olvble d h i excly he ol ube of elee i Z hvig ode qv q LEMMA 312 If q divide -i, he q divide -i fo evey > 0 ROOF By iducio I GF( q) whee q divide -l, he e SE(l,,q) # if d oly if O() q Sice hee e (q-l) elee of ode q d fo fixed b wih O(b) q, he e SE(I b,q) h (-l) elee, heefoe GF( q) h (-l)(q-l) (q-l) fudel (-l) cle wih idex i So we coclude: Sice -= I od q So, (314) i iege O(q) (q-l) + q--(-l)(q-l)+ I (-l) -q q (q-l) + (--q-l-l) + (-l)q q-2 +q-3 + + 1 + 1 (q-l) + (314) q i + >q- 1 + (q-l) od q 0 od q =2 V THEOREM 316 I GF( q whee q divide (-l), if O() q he fo evey q qs) q +v, whee 0 < < -v we hve SE(,, SE(,,q # d SE(q v+=l,,qv+) S(q,q

FUNDAMENTAL SETS OVER A FINITE FIELD 387 ROOF By Coolly 21 we hve,, SE,,q # Theoe 24 d Coolly 22 will ily h X q X + b; b Z h oluio wih idex q d +v-i GF(q ) By Theoe 21 he oluio e of hi equio i H { O + / GF( q d i i cle h H (D GF( q i- NOTE: Thi heoe i o ue i geel I i oible h i oe ce he iiu ubfield h coi ll he oluio of x x + h oe ubfield which coi oe of he oluio Fo Fheoe 3 coclude h i CF( q ), w]ee ql-l, SE(q,b,q ) i - ube of SE(q,,q ) if d oly if + v + v d b q, wlee qv v O(b) O() q -v Alo * v fo fixed Z wih ode q whee v > O, Theoe 315 iue he exiece of excly q elee "b" i Z uch v+l q v h 0(b) q d b Hece, fo fixed wih ode q d fixed " < -v hee e q elee b i Z uch h: SE(q-i,b,q ) SE(q,,q ) o qv v+i Z whee O( i) q d (i+l)q So, we hve SE(q- (i+l) -i ) Theefoe, if we wih 0 Z uch h 0( he hee e i+i, q SE(q,i, q fo evey i 0,1,2,-1 whee - >_ 0 d qv+ (-i) g, Le -1 q h whee g c d(h,q) i The fo evey Z # i d evey >_ i uch h O() qv i < v < E d + v < we hve he followig Le LEMMA 313 I SE(q,,qS), hee e excly (q -1)-( q -1)- g elee wih idex q d coefficie +v Fo hi le, we coclude h i GF( q hee e (q -l)-(q -i (-l) -q -i) q qv-l(q_l fudel cle v d ech cl h idex q d coefficie wih ode q Le 312 iue h (315) h iege vlue We will ue he oio: -I (315) F(,,v) (315), whee + v, 1 < v < d > i I i cle ow h i GF( q whee > i, we hve -i -i (q -q )- (q -i) (q-l) (-l)q (316)

388 Y ABBAS AND J J LIANG S fudel cle d ech cl h idex q wih coefficie 1 Theefoe, fo > 2, > 2 we coclude h: O(q) O(q -l) + (316) -6-1 6 + 2 F( -v v) + (-q v=l -6-1(q (-l)q (317) whee -6-1 i{-l, -l} d 6 x{o,-} If 1 he we hve: -i -I (q -i) (q-l) 0(q ) 0(q + (3 16) + -i (-1)q REFERENCES i LIANG, Joeh J, O he oluio of ioil equio ove Fiie Field Bull Clcu Mh Soc 70(1978), o 6, 379-382 2 LONG, Adew F, Fcoizio of ieducible olyoil ove Fiie Field wih he ubiuio xq-x fo X Ac Aih XXV 1973, 65-80 3 BERT, AA, Fudlel Coce of Highhe lgeb hoeix Sciece Seie, The Uiveiy of Chicgo e, 1956 4 ALAHEN, JD d KNUTH, Dold E, Tble of Fiie Field Skhy, The Idi Joul of Siic, Seie A, Vol 26, Dec 1964, 4, 305-328

Advce i Oeio Reech Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Advce i Deciio Sciece Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of Alied Mheic Algeb Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of obbiliy d Siic Volue 2014 The Scieific Wold Joul Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Diffeeil Equio Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014 Subi you uci h://wwwhidwico Ieiol Joul of Advce i Cobioic Hidwi ublihig Cooio h://wwwhidwico Mheicl hyic Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Joul of Colex Alyi Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Mheic d Mheicl Sciece Mheicl oble i Egieeig Joul of Mheic Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Dicee Mheic Joul of Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Dicee Dyic i Nue d Sociey Joul of Fucio Sce Hidwi ublihig Cooio h://wwwhidwico Abc d Alied Alyi Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Ieiol Joul of Joul of Sochic Alyi Oiizio Hidwi ublihig Cooio h://wwwhidwico Hidwi ublihig Cooio h://wwwhidwico Volue 2014 Volue 2014