Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces

Similar documents
Stable bundles with small c 2 over 2-dimensional complex tori

Fiberwise stable bundles on elliptic threefolds with relative Picard number one

arxiv: v2 [math.dg] 13 Feb 2018

1. Plurisubharmonic functions and currents The first part of the homework studies some properties of PSH functions.

APPROXIMATE YANG MILLS HIGGS METRICS ON FLAT HIGGS BUNDLES OVER AN AFFINE MANIFOLD. 1. Introduction

Generalized Hitchin-Kobayashi correspondence and Weil-Petersson current

Holomorphic torsion on Hermitian symmetric spaces

ANNALES SCIENTIFIQUES L ÉCOLE NORMALE SUPÉRIEURE. Cluster ensembles, quantization and the dilogarithm. Vladimir V. FOCK & Alexander B.

HYPER-KÄHLER FOURFOLDS FIBERED BY ELLIPTIC PRODUCTS

Semistability of certain bundles on a quintic Calabi-Yau threefold.

arxiv: v4 [math.dg] 15 Sep 2009

F. LAYTIMI AND D.S. NAGARAJ

ON EMBEDDABLE 1-CONVEX SPACES

Universität Regensburg Mathematik

ON A THEOREM OF CAMPANA AND PĂUN

ON THE PICARD GROUP FOR NON-COMPLETE ALGEBRAIC VARIETIES. Helmut A. Hamm & Lê Dũng Tráng

TitleOn manifolds with trivial logarithm. Citation Osaka Journal of Mathematics. 41(2)

Porteous s Formula for Maps between Coherent Sheaves

Pullbacks of hyperplane sections for Lagrangian fibrations are primitive

arxiv: v4 [math.dg] 7 Nov 2007

DERIVED EQUIVALENCE AND NON-VANISHING LOCI

arxiv:alg-geom/ v1 8 Nov 1994

INDRANIL BISWAS AND GEORG HEIN

Theta divisors and the Frobenius morphism

Math. Proc. Camb. Phil. Soc. (1999), 125,83 Printed in the United Kingdom 1999 Cambridge Philosophical Society

Chern numbers and Hilbert Modular Varieties

MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED THETA DIVISORS

ALGEBRAIC HYPERBOLICITY OF THE VERY GENERAL QUINTIC SURFACE IN P 3

A Gauss-Bonnet theorem for constructible sheaves on reductive groups

THE HITCHIN FIBRATION

Diophantine equations and beyond

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

CHARACTERISTIC FOLIATION ON NON-UNIRULED SMOOTH DIVISORS ON PROJECTIVE HYPERKÄHLER MANIFOLDS

Structure theorems for compact Kähler manifolds

FROBENIUS MORPHISM AND VECTOR BUNDLES ON CYCLES OF PROJECTIVE LINES

September 27, :51 WSPC/INSTRUCTION FILE biswas-loftin. Hermitian Einstein connections on principal bundles over flat affine manifolds

This theorem gives us a corollary about the geometric height inequality which is originally due to Vojta [V].

Stability of the Tangent Bundle of the Wonderful Compactification of an Adjoint Group

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

A note on the moving hyperplane method

Instantons and curves on class VII surfaces

Stability of the Poincaré Bundle

h : P 2[n] P 2(n). The morphism h is birational and gives a crepant desingularization of the symmetric product P 2(n).

Compact moduli spaces for slope-semistable sheaves

Non-uniruledness results for spaces of rational curves in hypersurfaces

K3 Surfaces and Lattice Theory

Holomorphic symmetric differentials and a birational characterization of Abelian Varieties

Generalized Tian-Todorov theorems

arxiv:math/ v1 [math.dg] 16 Mar 2004

The geometry of Landau-Ginzburg models

If F is a divisor class on the blowing up X of P 2 at n 8 general points p 1,..., p n P 2,

A TASTE OF TWO-DIMENSIONAL COMPLEX ALGEBRAIC GEOMETRY. We also have an isomorphism of holomorphic vector bundles

Fundamental Lemma and Hitchin Fibration

Holomorphic line bundles

Pacific Journal of Mathematics

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

FAKE PROJECTIVE SPACES AND FAKE TORI

Classifying complex surfaces and symplectic 4-manifolds

Density of rational points on Enriques surfaces

Hodge structures from differential equations

arxiv:alg-geom/ v1 29 Jul 1993

Rational Curves On K3 Surfaces

Vanishing theorems and holomorphic forms

NOTES ON HOLOMORPHIC PRINCIPAL BUNDLES OVER A COMPACT KÄHLER MANIFOLD

Math 797W Homework 4

CHAPTER 1. TOPOLOGY OF ALGEBRAIC VARIETIES, HODGE DECOMPOSITION, AND APPLICATIONS. Contents

RESEARCH STATEMENT: COMPACTIFYING RELATIVE PICARD SCHEMES

Projective Images of Kummer Surfaces

Chern Classes and the Chern Character

Stable maps and Quot schemes

On the characteristic cycle of an étale sheaf

Construction of M B, M Dol, M DR

APPENDIX 1: REVIEW OF SINGULAR COHOMOLOGY

1. Algebraic vector bundles. Affine Varieties

A Note on Dormant Opers of Rank p 1 in Characteristic p

Hyperkähler geometry lecture 3

ON THE INTERSECTION THEORY OF QUOT SCHEMES AND MODULI OF BUNDLES WITH SECTIONS

SEPARABLE RATIONAL CONNECTEDNESS AND STABILITY

Lecture on Equivariant Cohomology

Γ -convergence and Sobolev norms

CURRICULUM VITÆ. Mathematical interests : Number Theory, Logic (Model Theory), Algebraic Geometry, Complex and p-adic Analysis.

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

Divisor class groups of affine complete intersections

Fields of cohomological dimension 1 versus C 1 -fields

SIMPLE QUASICRYSTALS ARE SETS OF STABLE SAMPLING

KODAIRA DIMENSION OF LEFSCHETZ FIBRATIONS OVER TORI

The Grothendieck-Katz Conjecture for certain locally symmetric varieties

arxiv: v3 [math.dg] 29 Jun 2017

A set of formulas for primes

Fourier Mukai transforms II Orlov s criterion

Mathematical Research Letters 2, (1995) B-STRUCTURES ON G-BUNDLES AND LOCAL TRIVIALITY. V. G. Drinfeld and Carlos Simpson

2 G. D. DASKALOPOULOS AND R. A. WENTWORTH general, is not true. Thus, unlike the case of divisors, there are situations where k?1 0 and W k?1 = ;. r;d

Algebraic geometry versus Kähler geometry

A CRITERION FOR A DEGREE-ONE HOLOMORPHIC MAP TO BE A BIHOLOMORPHISM. 1. Introduction

Oral exam practice problems: Algebraic Geometry

HITCHIN KOBAYASHI CORRESPONDENCE, QUIVERS, AND VORTICES INTRODUCTION

CANONICAL BUNDLE FORMULA AND VANISHING THEOREM

Scalar curvature and the Thurston norm

Algebraic v.s. Analytic Point of View

Transcription:

Analytic Geometry/ Géométrie analytique Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces Matei Toma Abstract We prove the existence of a class of holomorphic vector bundles on some non-algebraic surfaces, especially on tori and primary Kodaira surfaces. This entails the existence of non-empty moduli spaces of stable bundles over non-kähler surfaces which admit compactifications as constructed in [4]. Fibrés vectoriels stables sur les surfaces non-algébriques engendrant des espaces de modules compacts Résumé Nous montrons l existence d une certaine classe de fibrés vectoriels holomorphes sur des surfaces non-algébriques, notamment sur les tores et sur les surfaces de Kodaira primaires. On en déduit l existence des espaces non-vides de modules des fibrés stables sur des surfaces non-kählériennes qui admettent les compactifications construites dans [4]. Version française abrégée Soient X une surface compacte complexe, ω la forme de K"ahler d une métrique de Gauduchon sur X, r un entier supérieur à 1, L un élément dans P ic(x) et c un entier arbitraire. Il existe alors un espace de modules M ω (r, L, c) des classes d isomorphisme des fibrés vectoriels sur X stables par rapport à ω, de rang r, déterminant L et seconde classe de Chern c. Lorsque ω est une forme de Hodge on peut compactifier M ω (r, L, c) d une façon naturelle. Pour ω arbitraire Buchdahl propose dans [4] une autre compactification dans le cas b 1 (X) pair et r = 2 ou bien lorsque (r, c 1 (L), c) vérifie la condition suivante : (*) tout fibré vectoriel E semistable sur X ayant rang(e) = r, c 1 (E) = c 1 (L) et c 2 (E) c est stable. Lorsque b 1 (X) est impair (*) equivaut à 1

Stable bundles on non-algebraic surfaces 2 (**) tout faisceau cohérent sans torsion F sur X ayant rang(f) = r, c 1 (F) = c 1 (L) et c 2 (F) c est irréductible (c.-à-d. F n admet pas de sous-faisceau cohérent en rang intermédiaire). On appellera un faisceau sans torsion F dont le rang et classes de Chern vérifient (**) stablement irréductible. Le but de cette note est de montrer que de tels faisceaux existent sur des surfaces non-kählériennes. En particulier certains espaces de modules de fibrés stables sur des surfaces non-kählériennes qui admettent des compactifications naturelles seront non-vides. Plus précisément on a Théorème. Tout fibré vectoriel topologique (complexe) E sur un tore complexe 2-dimensionnel ou sur une surface de Kodaira primaire ayant c 1 (E) NS(X) et discriminant entier non-négatif admet une structure holomorphe. Ici le discriminant de E est par définition le nombre rationnel (E) := c 2 (E) rang(e) 1 2 rang(e) c2 1(E). Corollaire. Soit X un tore complexe 2-dimensionnel ou une surface de Kodaira primaire et NS(X)/T orsns(x) soit libre engendré par un element a NS(X) tel que a 2 = 2rn pour des entiers positifs r et n, r > 1. Alors les fibrés vectoriels topologiques sur X de rang r, première n classe de Chern a et discriminant [0, r 1 [ admettent des structures holomorphes stablement irréductibles. Pour la démonstration du Théorème on construit d abord des fibrés vectoriels holomorphes à discriminant nul. Ces fibrés seront des images directes des faisceaux inversibles par des recouvrements non-ramifiés de la base. Ensuite on fait croître leur discriminant en leur ajoutant des singularités et en les déformant en des faisceaux localement libres. 1 Introduction Any hermitian metric on a compact complex surface X is conformally equivalent to a Gauduchon metric (i.e. such that its Kähler form ω is -closed). With respect to such an ω one may define the degree and hence (slope-)stability for holomorphic vector bundles on X. Isomorphism classes of stable bundles E with fixed rank, rank(e) = r > 1, determinant, det E = L, and second Chern class, c 2 (E) = c, are known to admit complex moduli spaces M ω (r, L, c) ; cf.[6]. When ω is a Hodge form on X, M ω (r, L, c) admits a natural compactification, [5]. A different compactification for arbitrary polarizations ω was constructed by Buchdahl in [4] when b 1 (X) even and r = 2 or when (r, c 1 (L), c) satisfies the following condition : (*) every semistable bundle E on X with rank(e) = r, c 1 (E) = c 1 (L) and c 2 (E) c is stable. As remarked in [4], this condition is satisfied when b 1 (X) is even, c 1 (L) is not a torsion class in H 2 (X, Z r ) and ω is generic. For b 1 (X) odd however, (*) is a much stronger restriction :

Stable bundles on non-algebraic surfaces 3 Remark. When b 1 (X) is odd (*) is equivalent to (**) every torsion-free coherent sheaf F on X with rank(f) = r, c 1 (F) = c 1 (L) and c 2 (F) c is irreducible (i.e. it does not admit coherent subsheaves of intermediate rank). It is clear that (**) implies (*). For the converse take a filtration 0 = F 0 F 1... F m = F by coherent subsheaves such that F i /F i 1 are torsion-free and irreducible for 1 i m. For b 1 (X) odd deg ω : P ic 0 (X) R is surjective, so suitable twists by line bundles L i from P ic 0 (X) yield a semistable vector bundle m i=1 ((F i/f i 1 ) L i ). This vector bundle is unstable precisely when m > 1, i.e. when F is reducible. We shall call a torsion-free coherent sheaf F stably irreducible if (rank(f), c 1 (F), c 2 (F)) satisfies (**). The only general existence result for holomorphic vector bundles on non-algebraic surfaces covers only the case of filtrable holomorphic structures ([1]). Thus it is a priori not clear whether stably irreducible bundles exist. They don t for instance when b 2 (X) = 0. (Use the fact that on nonalgebraic surfaces 2rc 2 (E) (r 1)c 2 1 (E) 0 and remark that when b 1(X) is odd (*) implies c < 0). In this note we prove that a certain class of topological vector bundles over non-algebraic surfaces, especially over tori and over primary Kodaira surfaces, admit holomorphic structures. This will provide examples of stably irreducible vector bundles over primary Kodaira surfaces. (Some examples have been known only in the case of tori, [7]). In a forthcoming paper we shall show that, under the condition (**), M ω (r, L, c) admits a different compactification, more natural from the view-point of analytic geometry. This will be the moduli space of simple sheaves on X with invariants (r, L, c). We thus obtain examples of compact moduli spaces of stable sheaves over non-kähler surfaces. 2 Our main existence result is Theorem Any topological (complex) vector bundle E on a 2-dimensional torus or on a primary Kodaira surface X with c 1 (E) NS(X) and non-negative integer discriminant admits some holomorphic structure. We define the discriminant of E to be the rational number (E) := c 2 (E) (rank(e) 1) 2 rank(e) The theorem is a consequence of the following Propositions : c 2 1(E). Proposition 1. Any topological vector bundle E on a 2-dimensional torus or on a primary Kodaira surface X with c 1 (E) NS(X) and (E) = 0 admits some holomorphic structure. Proposition 2. Let X be a compact complex surface with kod(x) = or with kod(x) = 0 and p g (X) = 1. Let E be a holomorphic vector bundle on X whose rank exceeds 1 and n

Stable bundles on non-algebraic surfaces 4 a positive integer. Excepting the case when X is K3, a(x) = 0, E is a twist of the trivial bundle by some line bundle and n = 1, there exists a holomorphic vector bundle F on X with rank(f ) = rank(e), c 1 (F ) = c 1 (E) and c 2 (F ) = c 2 (E) + n. For the proof of Proposition 1 in case X is a torus see [7], [8]. In the same way, by taking direct images of invertible sheaves through unramified covering maps, we prove the other case once we have : Lemma. Let X be a primary Kodaira surface, a NS(X) and p a prime divisor of 1 2 a2. There exists then an unramified covering q : X X of degree p and an element a NS(X ) such that p a = q (a). Proof of the Lemma. A primary Kodaira surface X is a topologically nontrivial elliptic bundle over an elliptic curve B. We denote by f : X B the projection and by F its fiber. Applying the Leray spectral sequence to the locally constant sheaf Z X, one obtains an exact sequence 0 H 2 (B, Z) m H 2 (B, Z) f H 2 (X, Z) H 1 (F, Z) H 1 (B, Z) 0 for some positive integer m ; cf. [2]. Choosing positively oriented frames for H 1 (F, Z) and H 1 (B, Z) and representing the image of an element a H 2 (X, Z) in H 1 (F, Z) H 1 (B, Z) by a 2 2-matrix A we see that the intersection form computes as a 2 = 2 det A. When 2p divides a 2 we can choose a frame for H 1 (B, Z) such that a column of A is a multiple of p. The other column will become divisible by p too after a suitable covering q : B B (given by the obvious sublattice of H 1 (B, Z)). Letting X := X B B and denoting by q X : X X the projection we obtain an element a H 2 (X, Z) such that qx (a) p a = qx (a (q X)! a ) is torsion. But the torsion classes in H 2 (X, Z) coming from H 2 (X, Z) are divisible by p. Thus qx (a) = p a for some a H 2 (X, Z), and a is in NS(X ) when a is in NS(X). Proof of Proposition 2. We may assume that for fixed rank and first Chern class E is chosen with minimal second Chern class. Consider a filtration 0 = E 0 E 1... E m = E by coherent subsheaves such that E i /E i 1 are irreducible of positive ranks r i, 1 i m. From the minimality assumption it follows that E i /E i 1 are locally free. When all r i equal 1 the assertion follows from [1]. If some r i0 > 1 we first perform surgery on E i0 /E i0 1 to obtain a simple coherent sheaf F 0 with c 2 (F 0 ) = c 2 (E i0 /E i0 1) + n by gluing singularities at x 1,..., x n X which locally look like I xj O r i 1 0. Our assumptions on X imply that for any simple sheaf G, H 2 (X, End 0 (G)) vanishes (cf. [1], 5.11), and thus the moduli spaces of simple sheaves on X are smooth of the expected dimensions (or empty). By a dimension count it follows that some deformation F of F 0 is locally free. Now (E i /E i 1 ) F gives the looked for holomorphic vector bundle. i i 0

Stable bundles on non-algebraic surfaces 5 3 We now apply the Theorem in order to prove existence for stably irreducible bundles. For a non-algebraic surface X, a NS(X) and r a positive integer, set s(r, a) := t(r, a) := 1 2r inf 1 k r 1 sup (a rµ) 2 µ NS(X) s(r, ka) k(r k). Remark 1. (cf. [9], II. 1.3) A holomorphic vector bundle E on a non-algebraic surface having (E) < t(rank(e), c 1 (E)) is stably irreducible. Corollary. Suppose X is a complex 2-torus or a primary Kodaira surface and NS(X)/T ors(ns(x)) is freely generated by some a NS(X) with a 2 = 2rn for positive integers r and n, r > 1. Then the topological vector bundles of rank r, first Chern class a and discriminant with 0 < n r 1 admit holomorphic stably irreducible structures. Remark 2. For any positive integers n, r both tori and Kodaira surfaces as in the Corollary exist. (See [9] I. 1.3 for examples of tori and use the explicit description of NS(X)/T ors(ns(x)) from [3] in the case of Kodaira surfaces). Remark 3. The moduli spaces M ω (r, L, c) in the situation of the Corollary are smooth of dimension 2r and independent of the polarization ω. Références [1] C. Bănică and J. Le Potier, Sur l existence des fibrés vectoriels holomorphes sur les surfaces non algébriques, J. reine angew. Math. 378, (1987), 1-31. [2] V. Brînzănescu, Neron-Severi group for nonalgebraic elliptic surfaces I, manuscripta math. 79, (1993), 187-195. [3] V. Brînzănescu, The Picard group of a primary Kodaira surface, Math. Ann. 296, (1993), 725-738. [4] N.P. Buchdahl, Blowups and gauge fields, preprint 1995. [5] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. Math. 106, (1977), 45-60. [6] M. Lübke and A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific, Singapore, 1995. [7] M. Toma, Une classe de fibrés vectoriels holomorphes sur les 2-tores complexes, C.R. Acad. Sci. Paris 311, Série I, (1990), 257-258. [8] M. Toma, A class of holomorphic vector bundles on two-dimensional tori, Rev. Roumaine Math. Pures Appl. 36, (1991), 309-317. [9] M. Toma, Holomorphic vector bundles on non-algebraic surfaces, Dissertation, Bayreuth, 1992. Universität Osnabrück, Fachbereich Mathematik/Informatik, 49069 Osnabrück, Germany and Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, RO-70700 Bucharest, Romania.