Standard candles in the Gaia perspective

Similar documents
Building the cosmic distance scale: from Hipparcos to Gaia

Gaia Data Processing - Overview and Status

Transient Astronomy with the Gaia Satellite

Igor Soszyński. Warsaw University Astronomical Observatory

GREAT. Kick-off meeting

The Gaia mission and the variable objects

Gaia: Mapping the Milky Way

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz

The Three Dimensional Universe, Meudon - October, 2004

Gaia: algorithms for the external calibration

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Frequency estimation uncertainties of periodic signals

Variability Analysis of the Gaia data

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

First Cycle Processing of Gaia data

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University)

The Cepheid distance to the LMC from the first results of the VISTA Magellanic Cloud (VMC) Survey.

Gaia: at the frontiers of astrometry ELSA conference 7-11 June 2010

Star clusters before and after Gaia Ulrike Heiter

Variable stars with LSST

arxiv: v1 [astro-ph] 12 Nov 2008

Simulations of the Gaia final catalogue: expectation of the distance estimation

Gaia Status & Early Releases Plan

The Impact of Gaia on Our Knowledge of Stars and Their Planets

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Results of the OGLE-II and OGLE-III surveys

Projects on the cosmic distance scale and stellar populations based on pulsating variables

Gaia, LSST and binaries

The cosmic distance scale

Thoughts on future space astrometry missions

Gaia s view of star clusters

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days.

The Gaia mission: status, problems, opportunities

arxiv:astro-ph/ v1 15 Nov 2005

Gaia data publication

Gaia, the universe in 3D: an overview of the mission. Gaia, the universe in 3D: an overview of the mission. X. Luri, ICCUB/IEEC

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks

High-performance computing in Java: the data processing of Gaia. X. Luri & J. Torra ICCUB/IEEC

arxiv: v1 [astro-ph.im] 13 Oct 2016

Gaia: a new vision of our Galaxy and our neighbours

ELSA Mid-Term Review meeting Coordinator's report

Astrometry in Gaia DR1

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Linking the ICRF and the future Gaia optical frame

MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY

Open Research Online The Open University s repository of research publications and other research outputs

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

arxiv:astro-ph/ v1 29 Nov 2006

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Automated Variable Source Classification: Methods and Challenges

Comparing the Period-Luminosity relationships in variable stars

That other way to measure H0:

Towards an accurate alignment of the VLBI frame with the future Gaia optical frame

Characterization of variable stars using the ASAS and SuperWASP databases

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

Recent Researches concerning Semi-Regular Variables

Light curve solutions of eclipsing binaries in SMC

5. The Baade-Wesselink Method

Massive OB stars as seen by Gaia

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg

arxiv: v1 [astro-ph.sr] 24 Oct 2018

arxiv: v8 [astro-ph.sr] 6 Jul 2018

Gaia: Astrometric performance and current status of the project

Gaia Data Release 1. Documentation release 1.1. European Space Agency and Gaia Data Processing and Analysis Consortium

Gaia Data Release 1: Datamodel description

AS1001: Galaxies and Cosmology

Astr As ome tr tr ome y I M. Shao

ELSA and Gaia: Four years of fruitful European collaboration

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth

The Distance Scale in the Gaia Era

Studying the Milky Way with pulsating stars

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Newsletter 16. Editorial by DPAC chair, François Mignard N 16 - APRIL 27, 2012

The Astrometry Satellite Gaia

Pulsating stars plethora of variables and observational tasks

arxiv: v1 [astro-ph.sr] 5 Sep 2014

Determination of the distance to the Andromeda Galaxy using variable stars

Astronomy from 4 Perspectives Bi-national Heraeus Sumer School Series for Teacher Students and Teachers

A spectroscopic hunt for binary RR Lyrae pulsators

From Gaia frame to ICRF-3 3?

Tests of MATISSE on large spectral datasets from the ESO Archive

Cosmic Distance Determinations

Galactic Surveys Astrometry and photometry. Carlos Allende Prieto IAC

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann

16th Microlensing Season of the Optical Gravitational Lensing Experiment

Gaia Photometric Data Analysis Overview

20 Table 1. Consortia members involved in the photometric analysis. Name Aliation Reduc. Merg. Variab. D.W.Evans NDAC * * L.Eyer INCA * J.-L.Falin FAS

The Science of Gaia and Future Challenges

Optical TDE hunting with Gaia

Asterseismology and Gaia

JINA Observations, Now and in the Near Future

The Infrared Properties and Period-Luminosity Relations of Red Supergiant Stars in the Magellanic Clouds

C. Ulusoy 1,2 and B. Ulaş3

Gaia ESA's billion star telescope

Newsletter 12. Editorial by DPAC chair, François Mignard N 12 - APRIL 29, 2011

Newsletter 8. Editorial by DPAC chair, François Mignard N 8 - APRIL 29, 2010

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting

Science Olympiad Astronomy C Division Event National Exam

Transcription:

Standard candles in the Gaia perspective Laurent Eyer, L. Palaversa, N. Mowlavi, P.Dubath Geneva Observatory and S.Leccia, G.Clementini, et al., T.Lebzelter et al., Gaia CU7 DPAC Naples, May 6 2011

Plan of the talk Quick reminder on Gaia Standard Candles measured by Gaia Gaia Data Processing and Analysis Consortium activities Location: L2

Plan of the talk Quick reminder on Gaia Standard Candles measured by Gaia Gaia Data Processing and Analysis Consortium activities Location: L2

The Gaia mission Satellite of the European Space Agency Observations of all the objets between than ~6 < V < ~20, about 1 billion objects Astrometry, photometry, spectrophotometry, and spectroscopy (radial velocities) Length: 5 (+1) years (70 times all sky) Launch (Soyuz rocket, French Guyana) 2013 Final Results: 2021 Location: L2

The astrometric performance: Mission Critical Design Review (April 2011):

The astrometric performance: Mission Critical Design Review (April 2011): Mean parallax error end of mission Position error ( as):... x ~0.7 Proper motion error ( as/year):... x ~0.5

10 micro arcsec is very,

10 micro arcsec is very, very,

10 micro arcsec is very, very, very,

10 micro arcsec is very, very, very, very small

10 micro arcsec is very, very, very, very small

10 micro arcsec is very, very, very, very small

Plan of the talk Quick reminder on Gaia Standard Candles measured by Gaia Gaia Data Processing and Analysis Consortium activities Location: L2

Standard candles in the perspective of Gaia Cepheids/RR Lyrae stars Long Period Variables, Mira, SR, OSARG Eclipsing binaries Others... (Supernovae, Novae,..., etc...)

General impact of Gaia Astrometry Calibration star luminosity Astrometric binary stars Calibration of primary distance indicators Photometry/Spectrophot. Detection of new cepheids, new RR Lyrae, new eclipsing systems... etc... Test of universality of standard candles RVS Physical parameters: Wilson-Devinney Baade Weselink method Detection of new standard candles such as OSARG in OGLE

Few numbers: RR Lyrae stars Galactic Observed 186 Hipparcos 1997 1,635 ASAS catalogue, as in 2011 Pojmanski ~4,000 LINEAR, Sesar, inprogress 16,836 OGLE, bulge, Soszynski 2011

Few numbers: RR Lyrae stars Galactic Observed 186 Hipparcos 1997 1,635 ASAS catalogue, as in 2011 Pojmanski ~4,000 LINEAR, Sesar, inprogress Estimated for Gaia 16,836 15,000-40,000 70,000 OGLE, bulge, Soszynski 2011 bulge Eyer & halo Cuypers (2000)

Few numbers: RR Lyrae stars Galactic Observed 186 Hipparcos 1997 1,635 ASAS catalogue, as in 2011 Pojmanski ~4,000 LINEAR, Sesar, inprogress Estimated for Gaia 16,836 15,000-40,000 70,000 OGLE, bulge, Soszynski 2011 bulge Eyer & halo Cuypers (2000) optimist: Gaia will multiply by nearly 5 the Galactic RR Lyrae number

Few numbers: RR Lyrae stars Galactic Observed 186 Hipparcos 1997 1,635 ASAS catalogue, as in 2011 Pojmanski ~4,000 LINEAR, Sesar, inprogress Estimated for Gaia 16,836 15,000-40,000 70,000 OGLE, bulge, Soszynski 2011 bulge Eyer & halo Cuypers (2000) optimist: Gaia will multiply by nearly 5 the Galactic RR Lyrae number LMC SMC 24,906 2,475 OGLE, Soszynski et al 2010

Few numbers: Cepheids Galactic Observed 273 509 Hipparcos 1997 Fernie et al. 1995 455 Berdnikov et al 2000 872 ASAS catalogue, as in 2011 Pojmanski

Few numbers: Cepheids Galactic Observed 273 509 Hipparcos 1997 Fernie et al. 1995 455 Berdnikov et al 2000 872 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 2,000-8,000 Eyer & Cuypers (2000) 9,000 Windmark (2011)

Few numbers: Cepheids Galactic Observed 273 509 Hipparcos 1997 Fernie et al. 1995 455 Berdnikov et al 2000 872 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 2,000-8,000 Eyer & Cuypers (2000) 9,000 Windmark (2011) optimist: Gaia will multiply by 10 the Galactic Cepheid number

Few numbers: Cepheids Galactic Observed 273 509 Hipparcos 1997 Fernie et al. 1995 455 Berdnikov et al 2000 872 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 2,000-8,000 Eyer & Cuypers (2000) 9,000 Windmark (2011) optimist: Gaia will multiply by 10 the Galactic Cepheid number LMC SMC 3,361 4,630 OGLE-III, Soszynski et al 2008-2010

Few numbers: Long Period Variables (M, SR, OSARG)

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia Eyer & Cuypers (2000) 200,000

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia 200,000 Eyer & Cuypers (2000) Mira?

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia 200,000 Eyer & Cuypers (2000) Mira?

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia 200,000 Eyer & Cuypers (2000) Mira?

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia 200,000 Eyer & Cuypers (2000) Mira? optimist: Gaia will multiply by nearly 40 the Galactic LPVs

Few numbers: Long Period Variables (M, SR, OSARG) Galactic Observed 1,238 2,793 (Mira) 2,691 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Bulge, OGLE-II Groenewegen et al. 2005 Estimated for Gaia 200,000 Eyer & Cuypers (2000) Mira? optimist: Gaia will multiply by nearly 40 the Galactic LPVs LMC 91,995 (12,795) 37,047 M+SR OGLE, Soszynski et al 2009 EROS, Spano et al in prep

Few numbers: Eclipsing binaries Galactic Observed 917 5,911 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski

Few numbers: Eclipsing binaries Galactic Observed 917 5,911 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 500,000 Söderhjelm 2004 6,000,000 Zwitter 2002

Few numbers: Eclipsing binaries Galactic Observed 917 5,911 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 500,000 Söderhjelm 2004 6,000,000 Zwitter 2002 3,000,000 Eyer & Cuypers 2000

Few numbers: Eclipsing binaries Galactic Observed 917 5,911 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 500,000 Söderhjelm 2004 6,000,000 Zwitter 2002 3,000,000 Eyer & Cuypers 2000 optimist: Gaia will multiply by nearly 1000 the Galactic eclipsing binaries

Few numbers: Eclipsing binaries Galactic Observed 917 5,911 Hipparcos 1997 ASAS catalogue, as in 2011 Pojmanski Estimated for Gaia 500,000 Söderhjelm 2004 6,000,000 Zwitter 2002 3,000,000 Eyer & Cuypers 2000 optimist: Gaia will multiply by nearly 1000 the Galactic eclipsing binaries LMC 26,202 OGLE, Graczyk et al soon SMC 1,351 OGLE-II, Wyrzykowski et al 2004

Plan of the talk Quick reminder on Gaia Standard Candles measured by Gaia Gaia Data Processing and Analysis Consortium activities Location: L2

The DPAConsortium: the global view Two main concepts:

The DPAConsortium: the global view Two main concepts: 1. Coordination Units CU1 Architecture CU3 Astrometry CU2 Simulation CU4 Objects CU5 Photometry CU6 Spectroscopy CU7 Variability CU8 A.P.

The DPAConsortium: the global view Two main concepts: 1. Coordination Units 2. Data Processing Centres CU1 Architecture CU3 Astrometry CU2 Simulation ESAC/BPC/OAOT BPC/CNES CU4 Objects CU5 Photometry CU6 Spectroscopy CU7 Variability CU8 A.P. CNES Cambridge CNES ObsGE/ISDC CNES

The DPAConsortium: the global view Two main concepts: 1. Coordination Units 2. Data Processing Centres CU1 Architecture CU3 Astrometry CU2 Simulation ESAC/BPC/OAOT BPC/CNES CU4 Objects CU5 Photometry CU6 Spectroscopy CU7 Variability CU8 A.P. CNES Cambridge CNES ObsGE/ISDC CNES > 450 people

The DPAConsortium: the global view Two main concepts: 1. Coordination Units 2. Data Processing Centres CU1 Architecture CU3 Astrometry CU2 Simulation ESAC/BPC/OAOT BPC/CNES CU4 Objects CU5 Photometry CU6 Spectroscopy CU7 Variability CU8 A.P. CNES Cambridge CNES ObsGE/ISDC CNES 79 people > 450 people

The goal of the consortium Produce a catalogue Data products that are useful for scientific community Help and maximise the scientific exploitation No proprietary data, ESA has the data rights, until public release New Coordination Unit CU9: data access, archive

The schedule: more than 25 years of work! 1993 1994 1995 1996 1997 1998 1999 2000 2005 2010 2015 2020 2021 Figure courtesy Michael Perryman and François Mignard Proposal Definition Implementation Operation Data Processing 2004 2003 2002 2001 Concept & Technology Study Mission Selection Re-Assessment Study Studies Phase B1 2009 2008 2007 2006 Selection of Prime Contractor (EADS Astrium) Phase B2 Phase C/D 2014 2013 2012 2011 Launch 2013 Software Development 2019 2018 2017 2016 Scientific operation Mission Data Processing Mission Products Intermediate Final Now 17

The schedule: more than 25 years of work! 1993 1994 1995 1996 1997 1998 1999 2000 2005 2010 2015 2020 2021 Figure courtesy Michael Perryman and François Mignard Proposal Definition Implementation Operation Data Processing 2004 2003 2002 2001 Concept & Technology Study Mission Selection Re-Assessment Study Studies Phase B1 2009 2008 2007 2006 Selection of Prime Contractor (EADS Astrium) Phase B2 Phase C/D 2014 2013 2012 2011 Launch 2013 Software Development 2019 2018 2017 2016 Scientific operation Mission Data Processing Mission Products Intermediate Final Now Early products Science Alerts... 17 18 months solution

Operation scenario: The van Leeuwen chart Days of Data 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 Launch End of Segment 03 End of Segment 02 End of Segment 01 End of Segment 00 L2 MDB-INIT First Data CDM-INIT-00 IOCR IDT FL AIM BAM CU6-Daily SCI Alerts IDT-00 re-runs PHOTPIPE PHOT-CAT-00 MDB-INT-00 MDB-00 End of Cycle 00 AGIS trials IDU trials IDU-XM-01 PHOT-CAT-01 AGIS-01 MDB-INT-01 IDT-02 Catalogue rev. MDB-01 End of Cycle 01 IDU-CAL-02 IDU-MAIN-02 AGIS-02 PHOTU-02 IDU-XM-02 PHOT-CAT-02 MDB-INT-02 MDB-02 End of Cycle 02 AGIS-03 End of AGIS-03 End of IDU-CAL-03 IDU-CAL-03 IDU-MAIN-03 PHOTU-03 IDU-XM-03 PHOT-CAT-03 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 Main Dates: Launch: 13/12/12 L2: Launch + 1 mo First Data: Launch + 3 mo IOCR: Launch + 4 mo Segment 00: 180 days Segment 01: 180 days Segment 02: 180 days Segment 03: 360 days Cycle 00: 225 days Cycle 01: 195 days Cycle 02: 165 days Cycle 03: 360 days Changes since previous issue : Cycle 00 IOCR = Launch + 4mo Insertion L2 = Launch + 1mo Insertion IDT-00 re-runs x 3 : 5 days, 5 days, 20 days CDM-INIT-00: beginning at (First Data + 45 days), duration = 30 days Cycle 01 Insertion IDU trials: 100 days in parallel of AGIS trials Move of AGIS-02 to AGIS-01: after PHOT-CAT-01 and before MDB-INT-01 AGIS-01 = 15 days IDT Catalogue revision during MDB-INT-01 Cycle 01 is extended by 15 days Cycle02 Insertion of PHOT-U-02 Cycle03 Segment 03 duration extended from 180 days to 360 days Assumptions/Constraints: CDM-INIT-00 succesfully calibrated by Cycle 00 IDT reruns at 6 times speed AGIS trials and IDU trials are successfull in Cycle 01 AGIS-01 converges with 12 mo of data IDU processes 360 days of data in 70 days in Cycle 02 DPCI facilities allow to process PhotPipe and Phot-U in parallel in Cycle 02 (Not all CU3 and CU5 SW products are included in this diagram) Limitation: astrometry needs 18 month solution MDB-INT-03 MDB-03 End of Cycle 03

CU7 Variability Analysis functional analysis

CU7 Variability Analysis functional analysis Period search algorithms and modelling the light curves (J.Cuypers)

CU7 Variability Analysis functional analysis

CU7 Variability Analysis functional analysis

CU7 Variability Analysis functional analysis 1) Supervised 2) Extraction 3) Unsupervised

Classification (J. De Ridder) Goal:Classification in variability types with membership probability

Classification (J. De Ridder) Goal:Classification in variability types with membership probability Confusion Matrix for Hipparcos periodic variables (random forest) Dubath et al. 2011

Classification (J. De Ridder) Goal:Classification in variability types with membership probability Confusion Matrix for Hipparcos periodic variables (random forest) Dubath et al. 2011 Richards et al. 2011

Classification (J. De Ridder) Goal:Classification in variability types with membership probability Confusion Matrix for Hipparcos periodic variables (random forest) Dubath et al. 2011 Richards et al. 2011 CU7: EROS, SDSS, CU2 simulations

CU7 Variability Analysis functional analysis

CU7 Variability Analysis functional analysis

CU7 Variability Analysis functional analysis SOS

CU7 Variability Analysis functional analysis SOS Specific Object Studies

Specific Object Studies N.Mowlavi (ObsGe/ISDC)

Specific Object Studies N.Mowlavi (ObsGe/ISDC)

Specific Object Studies N.Mowlavi (ObsGe/ISDC)

Specific Object Studies N.Mowlavi (ObsGe/ISDC)

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters Leccia et al, see poster

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters 2. Identify Blazhko RR Lyrae stars and double mode RR Lyrae/Cepheids Leccia et al, see poster

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters 2. Identify Blazhko RR Lyrae stars and double mode RR Lyrae/Cepheids 3. Identify pulsation mode Leccia et al, see poster

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters 2. Identify Blazhko RR Lyrae stars and double mode RR Lyrae/Cepheids 3. Identify pulsation mode 4. Determine stellar parameters Petersen Diagram Baade-Wesselink analysis Leccia et al, see poster

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters 2. Identify Blazhko RR Lyrae stars and double mode RR Lyrae/Cepheids 3. Identify pulsation mode 4. Determine stellar parameters 5. Identify binarity Petersen Diagram Baade-Wesselink analysis Leccia et al, see poster

Cepheid/RR Lyrae Clementini WorkPackage 1. Determine the Fourier parameters 2. Identify Blazhko RR Lyrae stars and double mode RR Lyrae/Cepheids 3. Identify pulsation mode 4. Determine stellar parameters 5. Identify binarity Petersen Diagram Baade-Wesselink analysis Leccia et al, see poster 6. Determine period changes

Long Period Variables T.Lebzelter WorkPackage

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve 2.Determine the star luminosity

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve 2.Determine the star luminosity Bolometric correction

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve 2.Determine the star luminosity Bolometric correction 3.Sub-classify

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve 2.Determine the star luminosity Bolometric correction 3.Sub-classify EROS data, Spano et al., in preparation

Long Period Variables T.Lebzelter WorkPackage 1.Quantify the irregularity of the light curve 2.Determine the star luminosity Bolometric correction 3.Sub-classify Note: astrometric shifts of the photocentre studied by CU4 EROS data, Spano et al., in preparation

Eclipsing binaires Eyer WorkPackage 1.Improve period

Eclipsing binaires Eyer WorkPackage 1.Improve period 2. Sub-classify e.g. Pojmanski: ED, ESD, EC, EOC

Eclipsing binaires Eyer WorkPackage 1.Improve period 2. Sub-classify e.g. Pojmanski: ED, ESD, EC, EOC 3.Determine the light curve geometry Durations Depths Phases of primary and secondary eclipses

Eclipsing binaires Eyer WorkPackage 1.Improve period 2. Sub-classify e.g. Pojmanski: ED, ESD, EC, EOC 3.Determine the light curve geometry Durations Depths Phases of primary and secondary eclipses 4.Update probability of being an eclipsing binary

Eclipsing binaires Eyer WorkPackage 1.Improve period 2. Sub-classify e.g. Pojmanski: ED, ESD, EC, EOC 3.Determine the light curve geometry Durations Depths Phases of primary and secondary eclipses 4.Update probability of being an eclipsing binary Wilson-Devinney applied by CU4 Objects processing Code rewritten in Java (Siopis et al.)

Conclusion: Probst 1974 pyramid Text

Conclusion: Probst 1974 pyramid Text

Conclusion: Probst 1974 pyramid Text Gaia is a unique mission putting together: astrometry, photometry, spectroscopy

The end Thank you for your attention!