On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications

Similar documents
A Size-Biased Poisson-Aradhana Distribution with Applications

A Size-Biased Poisson-Amarendra Distribution and Its Applications

Poisson-Size-biased Lindley Distribution

Size-biased discrete two parameter Poisson-Lindley Distribution for modeling and waiting survival times data

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME

Poisson-Mishra Distribution

Theoretical Properties of Weighted Generalized. Rayleigh and Related Distributions

Properties a Special Case of Weighted Distribution.

Size Biased Lindley Distribution Properties and its Applications: A Special Case of Weighted Distribution

( ) ( ) ( ) On Poisson-Amarendra Distribution and Its Applications. Biometrics & Biostatistics International Journal.

Basic concepts in estimation

A Quasi Gamma Distribution

THE FIVE PARAMETER LINDLEY DISTRIBUTION. Dept. of Statistics and Operations Research, King Saud University Saudi Arabia,

The Proportional Likelihood Ratio Order for Lindley Distribution

Zero inflated negative binomial-generalized exponential distribution and its applications

A Practitioner s Guide to Generalized Linear Models

Estimators as Random Variables

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

ON RELIABILITY CONCEPTS FOR DISCRETE LIFETIME RANDOM VARIABLES

Preservation of Classes of Discrete Distributions Under Reliability Operations

Different methods of estimation for generalized inverse Lindley distribution

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

ON INTERVENED NEGATIVE BINOMIAL DISTRIBUTION AND SOME OF ITS PROPERTIES

A Note on Closure Properties of Classes of Discrete Lifetime Distributions

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Marshall-Olkin Geometric Distribution

ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 2010 EDITION.

On Weighted Exponential Distribution and its Length Biased Version

Probability Distribution

2 The Polygonal Distribution

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Estimation of Mixed Exponentiated Weibull Parameters in Life Testing

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Some results on the ageing class

Songklanakarin Journal of Science and Technology SJST R2 Atikankul

Exponential modified discrete Lindley distribution

Stat 5101 Lecture Notes

ESTIMATOR IN BURR XII DISTRIBUTION

Modelling using ARMA processes

arxiv: v1 [stat.ap] 31 May 2016

Chapter 2 Inference on Mean Residual Life-Overview

Plotting data is one method for selecting a probability distribution. The following

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances

Alpha-Skew-Logistic Distribution

Using Weighted Distributions to Model Operational Risk

LINEAR COMBINATION OF ESTIMATORS IN PROBABILITY PROPORTIONAL TO SIZES SAMPLING TO ESTIMATE THE POPULATION MEAN AND ITS ROBUSTNESS TO OPTIMUM VALUE

Hacettepe Journal of Mathematics and Statistics Volume 45 (5) (2016), Abstract

NEGATIVE BINOMIAL DISTRIBUTIONS FOR FIXED AND RANDOM PARAMETERS

Discrete Generalized Burr-Type XII Distribution

Institute of Actuaries of India

Two Different Shrinkage Estimator Classes for the Shape Parameter of Classical Pareto Distribution

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. Syllabus at the F.Y. B.Sc. / B.A. In Statistics

About the Gamma Function

Overdispersion and underdispersion characterization of weighted Poisson distributions

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

Research Article On a Power Transformation of Half-Logistic Distribution

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 2000

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH *

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution

Variance Estimation Using Quartiles and their Functions of an Auxiliary Variable

Paper-V: Probability Distributions-I Unit-1:Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution (10)

2 Statistical Estimation: Basic Concepts

Optimal Search of Developed Class of Modified Ratio Estimators for Estimation of Population Variance

Generalized Exponential Distribution: Existing Results and Some Recent Developments

CREDIBILITY OF CONFIDENCE INTERVALS

OPTIMAL B-ROBUST ESTIMATORS FOR THE PARAMETERS OF THE GENERALIZED HALF-NORMAL DISTRIBUTION

Generalized linear models

A MODIFIED RATIO-CUM-PRODUCT ESTIMATOR OF FINITE POPULATION MEAN IN STRATIFIED RANDOM SAMPLING

A Generalized Poisson-Akash Distribution: Properties and Applications

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

A Convenient Way of Generating Gamma Random Variables Using Generalized Exponential Distribution

II. Probability. II.A General Definitions

Correlation and simple linear regression S5

ON MODIFIED SKEW LOGISTIC REGRESSION MODEL AND ITS APPLICATIONS

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

6.867 Machine learning

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That

Bayes Prediction Bounds for Right Ordered Pareto Type - II Data

Negative Multinomial Model and Cancer. Incidence

A NOTE ON SOME RELIABILITY PROPERTIES OF EXTREME VALUE, GENERALIZED PARETO AND TRANSFORMED DISTRIBUTIONS

Contents 1. Contents

314 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

Weighted Lomax distribution

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

MATHEMATICS AND STATISTICS

DS-GA 1002 Lecture notes 2 Fall Random variables

Nested Inequalities Among Divergence Measures

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Practical Meta-Analysis -- Lipsey & Wilson

ISI Web of Knowledge (Articles )

POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON ORDER STATISTICS

Research Design - - Topic 15a Introduction to Multivariate Analyses 2009 R.C. Gardner, Ph.D.

Earthquake Loads According to IBC IBC Safety Concept

Munitions Example: Negative Binomial to Predict Number of Accidents

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Transcription:

American Journal of Mathematics and Statistics 7, 7(): 99-7 DOI:.9/j.ajms.77. On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications Rama Shaner,*, A. Mishra Department of Statistics, Eritrea Institute of Technology, Asmara, Eritrea Department of Statistics, Patna University, Patna, India Abstract A size - biased version of the two parameter Poisson- Lindley distribution introduced by Shaner and Mishra () has been proposed of which the Ghitany and Al Mutairi s (8) size - biased one parameter Poisson-Lindley distribution is a particular case. A general epression for its rth factorial moment about origin has been derived and hence its raw moments and central moments are obtained. The epressions for its coefficient of variation, sewness, urtosis and inde of dispersion have also been given. The method of maimum lielihood and the method of moments for the estimation of its parameters have been discussed. The applications and the goodness of fit of the proposed distribution have been discussed with three data sets ecluding zero counts and the fit has been compared with that of size-biased Poisson and size-biased Poisson-Lindley distributions. Keywords Size-biased distributions, Two-parameter Poisson-Lindley distribution, Poisson-Lindley distribution, Size-biased distributions, Moments, Estimation of Parameters, Goodness of fit. Introduction The size - biased distributions arise when the observations generated from a random process do not have equal probability of being recorded and are recorded according to some weight function. When the sampling mechanism is such that the sample units are selected with probability proportional to some measure of the unit size, the resulting distribution is called size-biased distribution. Fisher (9) first introduced such distributions to model ascertainment bias and Rao (96) formulated these in a unifying theory. Patil and Ord (97) studied the size-biased sampling and the related form-invariant weighted distribution whereas Van Deusen (986) arrived at size - biased distribution theory independently and applied it to fitting distributions of diameter at breast height (DBH) data arising from horizontal point sampling (HPS). Later, Lappi and Bailey (987) analyzed HPS diameter increment data using size- biased distribution. Patil and Rao (977, 978) eamined some general models leading to size - biased distributions. The results were applied to the analysis of data relating to human populations and wild life management. Gove () reviewed some of the recent results on size- biased distributions pertaining to parameter estimation in forestry with special emphasis on Weibull distribution. Simoj and * Corresponding author: shanerrama9@gmail.com (Rama Shaner) Published online at http://journal.sapub.org/ajms Copyright 7 Scientific & Academic Publishing. All Rights Reserved Maya (6) introduced some fundamental relationships between weighted and unique variables in the contet of maintainability function and inverted repair rate. Mir and Ahmad (9), Das and Roy () and Ducey and Gove () have also studied the various aspects of size - biased distributions. A simple size-biased version of a distribution f ( ; ) is given by its probability function f ( ; ) f( ; ) where is the mean of the distribution. Ghitany and Al Mutairi (8) obtained a size-biased Poisson-Lindley distribution (SBPLD) given by its probability mass function (p.m.f.) ( + + ) P (, ) ; >,,,,... ( ) + + + (.) by size biasing the Poisson -Lindley distribution of Sanaran (97) having pmf P ( ) ( + + ) ( ) + + ; ;,,,, >.(.) It is to be mentioned that Sanaran (97) obtained the distribution (.) by miing the Poisson distribution with the Lindley (98) distribution having pdf f (, ) ( + ) e + ; >, > (.)

Rama Shaner et al.: On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications The first four moments about origin of the SBPLD (.) have been obtained as and so its variance as 6 + + ( + ) + 8 + + ( + ) + 6 + 78 + 68 + ( + ) + + + 8 + + 7 ( + + + ) 6 6 ( + ) ( + ) Shaner and Mishra () obtained a two-parameter Poisson-Lindley distribution (TPPLD) given by its pmf having its mean, P ( α + ;, α) ;,,,...;, α + + > > α + ( + ) α + α ( + ) It can be seen that the PLD (.) is a particular case of it at α. Shaner and Mishra () have shown that (.9) is a better model than the PLD of Sanaran (97) for analyzing different types of count data. This distribution arises from the Poisson distribution when its parameter λ follows the Shaner and Mishra () two parameter Lindley distribution having probability density function (p.d.f) f ( ;, α) ( α+ ) e ; >, >, α > α+ In this paper, a size -biased two parameter Poisson-Lindley distribution (SBTPPLD), of which the SBPLD (.) is a particular case, has been obtained. A general epression for its rth factorial moment about origin has been obtained and hence its first four moments about origin and central moments are obtained. The epressions for coefficients of variation, sewness, urtosis and inde of dispersion have also been given. The method of maimum lielihood and the method of moments for the estimation of its parameters have been discussed. The distribution has been fitted to some data sets to show that it provides closer fit than the size-biased Poisson distribution (SBPD) and SBPLD. This maes one believe that SBTPPLD is more fleible than the SBPD and SBPLD for analyzing different count data. (.) (.) (.6) (.7) (.8) (.9) (.) (.). A Size- Biased Two Parameter Poisson-Lindley Distribution A size -biased version of the two parameter Poisson-Lindley distribution (SBTPPLD) with parameters α and can be obtained as P ( ; α, ) P ( ; α, ) (.) Taing P ( ; α, ) from (.9) and from (.), we get

American Journal of Mathematics and Statistics 7, 7(): 99-7 ( + α + α + ) + ( ) P ( ;, α) ;,,,..., >, α > α+ + It can be easily seen that at α, SBTPPLD (.) reduces to SBPLD (.). The SBTPPLD (.) can also be obtained from the size- biased Poisson distribution when its parameter λ follows a size-biased two parameter Lindley distribution of Shaner and Mishra () with p.d.f. We have which is the SBTPPLD, as obtained in (.). Since f ( λ;, α ) λ ( α + λ ) e λ ; λ >, >, α > α+ λ (.) (.) e λ λ P( X ) λ( α + λ) (.) (! ) α+ ( + ) λ + e ( αλ + λ ) dλ α+! ( ) ( + ) α + α+ ( + ) + + + ( + + + ) + ( ) α α α+ + ( α) is a decreasing function of, P P + ;, + + P ;, α + + α+ α+ ;,,,... (.) (.6) ; α, is log-concave. This implies that the SBTPPLD is unimodal, has an increasing failure rate (IFR) and so increasing failure rate average (IFRA). It is new better than used (NBU), new better than used in epectation (NBUE) and has decreasing mean residual life (DMRL). Details about the definitions and relationship of these aging concepts can be seen in Barlow and Proschan (98).. Moments and Related Measures The rth factorial moment about origin of the SBTPPLD (.) can be obtained as ( r) E E( X λ r ) r X X X X X r From (.), we get Taing ( r), where...( + ). + in place of, we get λ ( r) e λ λ ( r) λ( α + λ) (! ) α+ + ( r)! λ r r e λ λ λ λ( α λ) r α+

Rama Shaner et al.: On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications λ r e λ λ ( r) λ ( + r) λ( α + λ)! α+ Clearly the epression within the bracet is ( λ + r) and hence we have r λ ( r) λ ( λ+ r)( α + λ) α+ Using gamma integral and a little algebraic simplification, a general epression for the rth factorial moment about origin of SBTPPLD is obtained as ( r) ( + + ) + ( + )( α+ + ) r ( α+ ) r! r α r r r ; r,,,... Substituting r,,, and in (.), the first four factorial moments about origin can be obtained and then using the relationship between factorial moments and moments about origin, the first four moments about origin of SBTPPLD are obtained as ( + ) + ( + 6) α α ( + ) ( + 6 + 6 ) + ( + 8 + ) α ( α+ ) ( + + 6 + ) + ( + + + ) α ( α+ ) ( + + + + ) + ( + 9 + 6 + + 7) α ( α+ ) Using the relationship between moments about mean and the moments about origin, the moments about mean of SBTPPLD can be obtained as ( + ) + ( + ) + ( + ) α α 6 6 ( α+ ) ( + + ) + ( 7 + + 8 ) + ( 6 + + 6 ) ( ) + + + α α α ( α+ ) ( + + + ) + ( 9 + + 6 + ) + ( + + + ) + ( + + + ) ( ) 7 6 6 α α α α (.8) 6 + + + + ( α+ ) CV, coefficient of sewness( β ), coefficient of urtosis( β ) and inde of dispersion 6 96 696 68 7 The coefficient of variation(. ) ( γ ) of SBTPPLD are thus given by (.) (.) (.) (.) (.) (.6) (.7)

American Journal of Mathematics and Statistics 7, 7(): 99-7 ( + ) + ( + ) + ( + ) ( ) ( 6) ( + + ) + ( 7 + + 8 ) + ( 6 + + 6 ) ( ) ( + ) + ( + 6 ) + 6( + ) σ α α 6 6 CV. α + + + + + + β α α α α α ( + + + ) + ( 9 + + 6 + ) + ( + 6 + 96 + ) + ( + 696 + 68 + 7 ) ( ) ( + ) + ( + 6 ) + 6( + ) 7 6 6 α α + + 6 + + β α α α α ( + ) + ( + ) + ( + ) ( + ) ( + ) + ( + 6) σ α α γ α α 6 6 It can be seen that at α these epressions reduce to the respective epressions of the SBPLD (.). (.9) (.) (.) (.). Estimation of Parameters.. Maimum Lielihood Estimates Let (,,, n ) be a random sample of size n from the SBTPPLD (.) and let f be the observed frequency in the (,,..., ) such that sample corresponding to X, where is the largest observed value having non-zero frequency. The lielihood function, L of the SBTPPLD (.) is given by and so the log lielihood function is obtained as n ( + ) ( + ) f n L α + + + + f f ( α α ) (.) log L nlog f + log + + f log α + + + + The two log lielihood equations are thus obtained as ( ) ( α α ) (.) ( + ) log L n nα n α f + α+ + + α+ α+ (.) ( + ) f log L n + α α+ + α+ α+ (.) The two equations (.) and (.) do not seem to be solved directly. However, the Fisher s scoring method can be applied to solve these equations. We have

Rama Shaner et al.: On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications ( + ) α f log L n nα n + + (.) ( α+ ) + + α+ α+ ( + ) f log L n (.6) α ( α+ ) + α+ α+ ( + ) f log L n ( + ) + + + For the maimum lielihood estimates ( ˆ, ˆ ) (.7) α α α α α of (, ) α of SBTPPLD (.), following equations can be solved log L log L log L α log L α ˆ log L log L ˆ α α α α ˆ ˆ α α ˆ ˆ α α (.8) where and α being the initial values of and α are given by the method of moments. These equations are solved iteratively till sufficiently close estimates of ˆ and ˆα are obtained... Estimates from Moments The SBTPPLD has two parameters to be estimated and so the first two moments about origin are required to get the estimates of its parameters by the method of moments. From (.) and (.) we have Taing α β, we get which gives ( ) ( ) α+ α+ K (say) α+ ( β + )( β + ) ( β + ) β K K (.9) (.). (.) Replacing the first two population moments by the respective sample moments in (.9) an estimate of K can be obtained and using it in (.), an estimate b of β can be obtained. Again, substituting α β in (.) and replacing the population mean by the sample mean and β by b, moment estimate of is obtained as and so the moment estimate α of α is obtained as ( b + ) ( b+ )( ) (.)

American Journal of Mathematics and Statistics 7, 7(): 99-7 ( ) ( b + ) α b bb + (.). Goodness of Fit The SBTPPLD has been fitted to a number of data sets related to a number of observations of the size distribution of freely forming small groups in various public places reported by James (9), Coleman and James (96) and Simonoff (), and it was found that to almost all these data sets, the SBTPPLD provides closer fit than SBPD and SBPLD. Here, the goodness of fit of the SBTPPLD to three such data sets has been presented along with the goodness of fit given by SBPD and SBPLD. Table. Counts of groups of people in public places on a spring afternoon in Portland Size of Groups Observed Frequency Epected Frequency SBPD SBPLD SBTPPLD 6 86 69 9 7. 7. 9....6.9 6.8 9...7. 8. 697. 89.7. 7.9.6 Total... ML Estimates ˆ.8 ˆ. ˆ 7. ˆ α.7 χ 7.69.786.87 d.f. Table. Counts of Shopping Groups-Eugene, Spring, Department Store and Public Maret Size of Groups Observed Frequency Epected Frequency SBPD SBPLD SBTPPLD 6 6..9.7 6..6.7 9.8.. 6.8.9.7.6 9.. Total... ML Estimates ˆ.98 ˆ.6 ˆ 6.6 ˆ α.77 χ.8..9 d.f.

6 Rama Shaner et al.: On Size- Biased Two Parameter Poisson-Lindley Distribution and Its Applications Table. Counts of Play Groups-Eugene, Spring, Public Playground Size of Groups Observed Frequency Epected Frequency SBPD SBPLD SBTPPLD 6 96. 9..7 7.6......8... 8.. 9.7.9. Total 7 7. 7. 7. ML Estimates ˆ.6 ˆ.8 ˆ 6.778 ˆ α.6 χ.98 6..9 d.f. The epected frequencies according to the SBPD and SBPLD have also been given in these tables for ready comparison with those obtained by the SBTPPLD. The estimates of the parameters have been obtained by the method of maimum lielihood estimation. On the basis of the values of chi-square, it can be seen that the SBTPPLD gives much closer fit than those by the SBPD and SBPLD. β, coefficient of urtosis ( β ) and inde of dispersion ( γ ) for estimated values of parameters for SBPD, SBPLD, and SBTPPLD and for original data for tables, The values of coefficient of variation (C.V), coefficient of sewness ( ) and are presented in the following table. Table. Values of C.V, β, β and γ of SBPD, SBPLD, and SBTPPLD for estimated values of parameters and for original data Data set Original Data SBPD SBPLD SBTPPLD C.V.9.7.78.998 β.89.9786.876.6977 Table β.79769.9888 7.7 6.9977 γ.77.87.89.787 C.V..79.7. β.87..89776.677 Table β.69.96 7.87 6.678 γ.8.766.99.8 C.V.7.7678.799. β.697.6.86.98 Table β.88.869 7.78 6.98 γ.8.97.797.876

American Journal of Mathematics and Statistics 7, 7(): 99-7 7 It is also obvious from the analysis of the table,,, and that the distribution which gives better fit in terms of chi-square values are the distribution whose inde of dispersion for given values of the parameters is equal or nearer to the value of the inde of dispersion of the original data. For eample, it is clear that the inde of dispersion of SBTPPLD is almost equal to the inde of dispersion of the original data. Therefore, both the inde of dispersion and the values of chi-square of SBTPPLD certify that the SBTPPLD is the best model than both SBPD and SBPLD for modeling data which structurally ecludes zero counts. 6. Conclusions In this paper, a size-biased two parameter Poisson-Lindley distribution (SBTPPLD), of which the size-biased Poisson-Lindley distribution (SBPLD) is a particular case, has been introduced to model count data which structurally ecludes zero counts. The first four moments about origin, moments about mean, and epressions for coefficient of variation, sewness, urtosis and inde of dispersion have been obtained. The estimation of its parameters has been discussed using the method of maimum lielihood and the method of moments. The goodness of fit of the distribution has been presented to three data sets and it has been found that to all these data sets it provides much closer fit than both SBPD and SBPLD. The SBTPPLD has been found more general in nature and wider in scope than SBPD and SBPLD. Since SBTPPLD provides much closer fit to the observed data sets than those provided by the SBPD and SBPLD, SBTPPLD should be preferred over SBPD and SBPLD for modeling count data sets which structurally ecludes zero counts. ACKNOWLEDGEMENTS The authors are grateful to the Editor-In-Chief of the journal and the anonymous reviewer for constructive and helpful comments which lead to the improvement in the quality of the paper. REFERENCES [] Barlow, R.E. and Proschan, F. (98): Statistical Theory of Reliability and Life Testing, Silver Spring, MD [] Coleman, J.S. and James, J. (96): The equilibrium size distribution of freely forming groups, Sociometry,, 6. [] Das, K.K. and Roy, T.D. (): On some length biased weighted Weibull distribution, Advances in Applied Science Research, (), 6 7. [] Ducey, M.J. and Gove, J.H. (): Size-biased distributions in the generalized Beta distribution family with Applications to forestry, Forestry-An International Journal of Forest Research, 88.. [] Fisher, R.A. (9): The effects of methods of ascertainment upon the estimation of frequency, Ann. Eugenics, 6, -. [6] Ghitany, M.E., Al-Mutairi, D.K. (8): Size- biased Poisson-Lindley distribution and its applications, Metron, LXVI, (), 99. [7] Gove, H. J. (): Estimation and application of size-biased distributions in forestry, In Modeling Forest Systems, A. Amaro, D. Reed and P.Soares, CAB International, Wallingford, U.K.,. [8] James, J. (9): The Distribution of Free-Forming Small Group Size, American Sociological Review, 8, 69 7. [9] Lappi, J. and Bailey, R. L. (987): Estimation of diameter increment function or other relations using angle-count samples, Forest Science,, 7 79. [] Lindley, D.V. (98): Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society, Series B,, - 7. [] Mir, K.A. and Ahmad, M. (9): Size-biased distributions and Their Applications, Paistan Journal of Statistics, (), 8 9. [] Patil, G. P. and Rao, C. R. (977): The weighted distributions: A survey and their applications, In Applications of Statistics, (Ed. P.R. Krishnaiah), 8, North Holland Publications co., Amsterdam. [] Patil, G. P. and Rao, C. R. (978): Weighted distributions and size-biased sampling with applications to wild life populations and human families, Biometrics,, 79-89 [] Rao, C. R. (96): On discrete distributions arising out of methods on ascertainment, Classical and Contagious Discrete Distribution, Patil, G.P. (Ed), Statistical Publishing Society, Calcutta, -. [] Sanaran, M (97): The discrete Poisson-Lindley distribution, Biometrics, 6, 9. [6] Shaner, R. and Mishra, A. (): A two parameter Lindley distribution, Statistics in Transition-New Series, (), 6. [7] Shaner, R. and Mishra, A. (): A two parameter Poisson-Lindley distribution, International Journal of Statistics and Systems, 9 (), 79 8.s [8] Simoj, S.M. and Maya, S.S. (6): Some properties of weighted distributions in the contet of reparable systems, Communications in Statistics-Theory and Methods,, 8. [9] Simonoff, J.S. (): Analyzing categorical data, New Yor Springer. [] Van Deusen, P.C. (986): Fitting assumed distributions to horizontal point sample diameters, Forest Science,, 6 8.