Description of (p, pn) reactions induced by Borromean nuclei

Similar documents
Physics of neutron-rich nuclei

Dynamics of the scattering of 11 Li on 208 Pb at energies around the Coulomb barrier

Semi-Classical perturbation theory Coulomb only First-order most used

Workshop on low-energy nuclear reaction dynamics

The role of core excitations in break-up reactions

The many facets of breakup reactions with exotic beams

Status of deuteron stripping reaction theories

Problems in deuteron stripping reaction theories

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Recent advances in nuclear reaction theories for weakly bound nuclei

Three- and four-particle scattering

nuclear states nuclear stability

Di-neutron correlation in Borromean nuclei

arxiv:nucl-th/ v1 1 May 1997

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Single-particle and cluster excitations

Theory and Calculation of Two-nucleon Transfer Reactions

Structure at and Beyond the Neutron Dripline

Theory of Nuclear reactions. Scattering theory: multi-channel!

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

Fusion of light halo nuclei

Pairing Correlations in Nuclei on Neutron Drip Line

Two neutron transfer in Sn isotopes

Universidad de Sevilla

Nuclear and Coulomb excitations of the pygmy dipole resonances

Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by high-resolution 58 Ni( 3 He,t) and 58 Ni(p,p ) measurements

Eikonal method for halo nuclei

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

Two-Proton Halo Structure

Neutron Halo in Deformed Nuclei

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Knockout beyond the drip line

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo

Three-cluster dynamics within an ab initio framework

Nuclear Science Seminar (NSS)

Inclusive breakup measurements of the 7 Li+ 119 Sn system.

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Variatonal description of continuum states

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Physic 492 Lecture 16

Quasi-Free Knockout Reaction Studies at RIBF

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Theory Challenges for describing Nuclear Reactions

Scattering theory II: continuation

Deuteron induced reactions, spin distributions and the surrogate method

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

Radiative-capture reactions

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electroproduction of p-shell hypernuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

The Nuclear Many-Body problem. Lecture 3

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Inclusive deuteron induced reactions

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Determining Two Reaction Rates in Novae using the ANCs Technique. Tariq Al-Abdullah Hashemite University, Jordan Russbach, March 2011

The optical potential of light exotic nuclei

The astrophysical reaction 8 Li(n,γ) 9 Li from measurements by reverse kinematics

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Study of Neutron-Proton Correlation & 3N-Force in 12 C

Molecular Structures in Slow Nuclear Collisions

Microscopic nuclear form factor for the Pygmy Dipole Resonance

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Direct reactions methodologies for use at fragmentation beam energies

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei

Deuteron induced reactions

Nuclear Reactions - Experiment I

CNO cycle: Soft E1 mode of the 17 Ne excitation in the 17 Ne+γ 15 O+2p reaction

Fusion Reactions with Carbon Isotopes

A path to lepton-nucleus reactions from first principles

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Nucleon Transfer within Distorted Wave Born Approximation

Structure of halo nuclei and transfer reactions

STATES. D. Mark Manley. February 1, Department of Physics Kent State University Kent, OH USA KL 0 P SCATTERING TO 2-BODY FINAL

The Super-FRS Project at GSI

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view

Reaction Dynamics for Light Dripline Nuclei

13. Basic Nuclear Properties

Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ at 15 MeV/nucleon

From few-body to many-body systems

Nucleon Electromagnetic Form Factors: Introduction and Overview

Photopion photoproduction and neutron radii

Coherent and incoherent π 0 photoproduction from nuclei

Compound Nucleus Reactions

Quantum Theory of Many-Particle Systems, Phys. 540

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Nuclear spectroscopy using direct reactions of RI beams

Meson-baryon interaction in the meson exchange picture

Sunday Monday Thursday. Friday

Determination of the η -nucleus optical potential

Charge exchange reactions and photo-nuclear reactions

Coulomb breakup of light composite nuclei. Abstract

Beyond mean-field study on collective vibrations and beta-decay

Transcription:

Fiera di Primiero. October 6, 2017 Selected Topics in Nuclear and Atomic Physics Description of (p, pn) reactions induced by Borromean nuclei Jesús Casal ECT /FBK, Trento, Italy Mario Gómez-Ramos Antonio M. Moro Dpto. de Física Atómica, Molecular y Nuclear Universidad de Sevilla, Spain

1 2 3 4 5 J. Casal, Fiera di Primiero 2017

1 2 3 4 5 J. Casal, Fiera di Primiero 2017

(p, pn) reactions A nucleus and a proton collide One nucleon is removed leaving a residual fragment High energies to increase mean free path of nucleon inside nucleus Proton-target knockout (p, pn) or (p, 2p) The interaction happens between the proton and a single nucleon Used to extract spectroscopic information of nuclei J. Casal, Fiera di Primiero 2017 p. 1

16 Ne 17 Ne 18 Ne 19 Ne 20 Ne 21 Ne 22 Ne 23 Ne 24 Ne 25 Ne 26 Ne 10 Borromean nuclei 14 F Z 15 F 16 F 17 F 18 F 19 F 20 F 21 F 22 F 23 F 24 F 25 F 3b systems with no bound 2b pairs 12 O 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 10 N 11 N 12 N 13 N 14 N 15 N 16 N 17 N 18 N 19 N 20 N 21 N 22 N 23 N 8C 9C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 6B 7B 8B 9B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 B 20 B 5 Be 6 Be 7 Be 8 Be 9 Be 4 Li 5 Li 6 Li 7 Li 8 Li 9 Li 10 Li 11 Li 3 He 4 He 5 He 6 He 7 He 8 He 9 He 10 He 2H 3H 4H 5H 6H 7H 8 6 4 3 Li 2 1H 10 Be 11 Be 12 Be 13 Be 14 Be 15 Be 16 Be 12 Li 13 Li p-rich n-rich 2n halo stable unbound N n 0 0 2 4 6 8 10 12 J. Casal, Fiera di Primiero 2017 14 16 p. 2

(C + N 1 + N 2 ) + p }{{} (C + N 2 ) +N }{{} 1 + p A B If A is Borromean, the unbound fragment B will eventually decay Spectroscopic information on the projectile by probing the continuum wave function of the unbound fragment J. Casal, Fiera di Primiero 2017 p. 3

Linking structure and dynamics in (p, pn) reactions with Borromean nuclei: The 11 Li(p, pn) 10 Li case M. Gómez-Ramos, J. Casal, A. M. Moro PLB 772 (2017) 115 arxiv:1703.08320 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 9 Be 10 Be 11 Be 12 Be 13 Be 14 Be 15 Be 16 Be 8 Li 9 Li 10 Li 11 Li 12 Li 13 Li 7 He 8 He 9 He 10 He Data on 8 He, 11 Li, 14 Be from GSI available 6 H 7 H New exp. on 11 Li, 14 Be, 17 B from RIKEN under analysis J. Casal, Fiera di Primiero 2017 p. 4

Transfer to the Continuum (TC) Overlaps 1 2 3 4 5 J. Casal, Fiera di Primiero 2017

Transfer to the Continuum (TC) Overlaps Transfer to the Continuum (TC) No IA assumed No factorization approximation Participant/spectator approach N 2 C x y N 1 A R p N 2 B x C R p N 1 r J. Casal, Fiera di Primiero 2017 p. 5

Transfer to the Continuum (TC) Overlaps Transfer to the Continuum (TC) No IA assumed No factorization approximation Participant/spectator approach N 2 C x y N 1 A R p N 2 B x C R p N 1 r Prior representaton of the T-matrix T if = ( x)ψ ( ) f ( r, R ΦA ) V pn1 + U pb U pa ( x, y)χ (+) pa ( R), where ϕ ( ) q ϕ q continuum wave function of the binary fragment B Ψ f final (pn)-b wave function Φ A g.s. wave function of the initial 3b composite A χ pa distorted p-a wave [M. Gómez-Ramos, J.C., A.M. Moro, PLB 772 (2017) 115] J. Casal, Fiera di Primiero 2017 p. 5

Transfer to the Continuum (TC) Overlaps Final wave function Expanded in proton-nucleon states (CDCC) Ψ f ( r, R ) nj Π φ J n Π (k n, r )χ J n Π ( K, R ) R N 1 r B p J. Casal, Fiera di Primiero 2017 p. 6

Transfer to the Continuum (TC) Overlaps Final wave function Expanded in proton-nucleon states (CDCC) Ψ f ( r, R ) nj Π Basis of N discretized bins φ J n Π (k n, r )χ J n Π ( K, R ) φ J Π n (k n, r ) = 2 kn φ J Π pn πn 1 (k, r )dk. k n 1 R N 1 r B p A + p B + pn 1 J. Casal, Fiera di Primiero 2017 p. 6

Transfer to the Continuum (TC) Overlaps Final wave function Expanded in proton-nucleon states (CDCC) Ψ f ( r, R ) nj Π Basis of N discretized bins φ J n Π (k n, r )χ J n Π ( K, R ) φ J Π n (k n, r ) = 2 kn φ J Π pn πn 1 (k, r )dk. k n 1 R N 1 r B p If we select the (p, d) channel TC reduces to DWBA A + p B + pn 1 Ψ f ( r, R ) φ d ( r )χ d-b ( R ) J. Casal, Fiera di Primiero 2017 p. 6

Transfer to the Continuum (TC) Overlaps 2b continuum state of fragment B s 2 N 2 x L, J C I ϕ (+) 4π q,σ 2,ι ( x) = qx LJJ T M T i L Y LM ( q) LMs 2 σ 2 JM J JM J Iι J T M T f J T LJ (qx)[y Ls 2J( x) κ I ] JT M T Coupling order: L + s 2 = J, J + I = JT Obtain solution for each (L, J)J T : f J T LJ (qx) i [ 2 eiσ L H ( ) L (qx) SJ T LJ H(+) L (qx) ] J. Casal, Fiera di Primiero 2017 p. 7

Transfer to the Continuum (TC) Overlaps 3b g.s. wave function of A N 2 s 2 l x, j x x y l y C I N 1 s 1 β {K, l x, j x, j 1, l y, j 2 } lx + s 2 = j x, j x + I = j 1 ly + s 1 = j 2, Analytical THO method j 1 + j 2 = j Diagonalize H 3b using: [PRC 88 (2013) 014327] Binary interactions C-N i, N 1 -N 2 Three-body force to fine-tune g.s. energy Φ jµ A ( x, y) = β w j β (x, y) { [Y lxs 2j x ( x) κ I ] j1 [ Y ly (ŷ) κ s1 ] j 2 }jµ Consistent with 2b wave function: same potential and couplings J. Casal, Fiera di Primiero 2017 p. 8

Transfer to the Continuum (TC) Overlaps Assume (V pn1 + U pb U pa ) does not change the state of B Define overlaps 2b 3b : ψ LJJT M T (q, y) = f J T LJ (qx) x [Y Ls2 J( x) ψ I ] JT M T Φ jµ A ( x, y)d x J. Casal, Fiera di Primiero 2017 p. 9

Transfer to the Continuum (TC) Overlaps Assume (V pn1 + U pb U pa ) does not change the state of B Define overlaps 2b 3b : ψ LJJT M T (q, y) = f J T LJ (qx) x [Y Ls2 J( x) ψ I ] JT M T Φ jµ A ( x, y)d x Auxiliary amplitudes for each 2b configuration {(L, s 2 )J, I}J T : T LJJ T M T if Ψ ( ) f ( r, R ) V pn1 +U pb U pa ψ LJJT M T (q, y)χ (+) pa Cross sections dσn 2 T LJJ T M T dω B dε if x 2 J. Casal, Fiera di Primiero 2017 p. 9

GSI data TC calculations Transfer reaction 1 2 3 4 5 J. Casal, Fiera di Primiero 2017

GSI data TC calculations Transfer reaction 11 Li(p, pn) 10 Li in inverse kinematics ALADIN-LAND setup at GSI [Aksyutina et al., PLB 666 (2008) 430] 280 AMeV spectroscopic information extracted through fitting reaction dynamics not considered More recent data from RIKEN is coming J. Casal, Fiera di Primiero 2017 p. 10

GSI data TC calculations Transfer reaction TC calculations [spin of 9 Li ignored, I π = 0 + ] 10 Li ( 9 Li + n) 11 Li ( 9 Li + n + n) 2s 1/2 virtual state: a = 20.9 fm 1p 1/2 resonance at 0.5 MeV 1d 5/2 state around 4.5 MeV 0 + g.s. at -0.37 MeV r mat = 3.55 fm, r ch = 2.48 fm 64% s 1/2, 30% p 1/2, 3% d 5/2 J. Casal, Fiera di Primiero 2017 p. 11

GSI data TC calculations Transfer reaction TC calculations [spin of 9 Li ignored, I π = 0 + ] 10 Li ( 9 Li + n) 11 Li ( 9 Li + n + n) 2s 1/2 virtual state: a = 20.9 fm 1p 1/2 resonance at 0.5 MeV 1d 5/2 state around 4.5 MeV 0 + g.s. at -0.37 MeV r mat = 3.55 fm, r ch = 2.48 fm 64% s 1/2, 30% p 1/2, 3% d 5/2 dσ/dε n- 9 Li (mb/mev) 60 40 20 TC, p 1/2 TC, s 1/2 TC, total; σ = 32.0 mb experimental resolution 0 0 0.5 1 1.5 ε 9 n- Li (MeV) 0 0.5 1 1.5 2 ε n- 9 Li (MeV) J. Casal, Fiera di Primiero 2017 p. 11

GSI data TC calculations Transfer reaction TC calculations [spin of 9 Li ignored, I π = 0 + ] 10 Li ( 9 Li + n) 11 Li ( 9 Li + n + n) 2s 1/2 virtual state: a = 20.9 fm 1p 1/2 resonance at 0.5 MeV 1d 5/2 state around 4.5 MeV 0 + g.s. at -0.37 MeV r mat = 3.55 fm, r ch = 2.48 fm 64% s 1/2, 30% p 1/2, 3% d 5/2 dσ/dε n- 9 Li (mb/mev) 60 40 20 Exp data, σ = 30.3 mb TC 0 0 0.5 1 1.5 2 ε 9 n- Li (MeV) J. Casal, Fiera di Primiero 2017 p. 11

dσ/de n 9 Li (mb/mev) 80 60 40 20 80 60 40 20 80 60 40 20 s-wave p-wave total s-wave p-wave total s-wave p-wave d-wave total P3 P4 P5 0 0 0.5 1 1.5 0 0.5 1 1.5 2 E 9 n Li (MeV) GSI data TC calculations Transfer reaction w/o energy resolution with energy resolution Sensitivity to the structrure model P3: reference model Not sufficient to confirm d 5/2 resonance P4: virtual state at higher E p resonance at lower E P5: with d resonance 1.5 MeV a E r[p 1/2 ] E r[d 5/2 ] P3-29.8 0.50 4.3 P4-16.2 0.23 4.3 P5-29.8 0.50 1.5 (fm) (MeV) (MeV) %s 1/2 %p 1/2 %d 5/2 P3 64 30 3 P4 27 67 3 P5 39 35 23 J. Casal, Fiera di Primiero 2017 p. 12

GSI data TC calculations Transfer reaction spin-spin splitting: s 1/2 1, 2 p 1/2 1 +, 2 + Include spin of 9 Li; I π = 3/2 Model P1I: 10 Li: a = 37.9 fm (2 ) res. at 0.37, 0.61 MeV 11 Li: 3/2 g.s. at -0.37 MeV r mat = 3.2 fm r ch = 2.41 fm 67% s, 31% p J. Casal, Fiera di Primiero 2017 p. 13

GSI data TC calculations Transfer reaction spin-spin splitting: s 1/2 1, 2 p 1/2 1 +, 2 + Model P1I: 10 Li: a = 37.9 fm (2 ) res. at 0.37, 0.61 MeV 11 Li: 3/2 g.s. at -0.37 MeV r mat = 3.2 fm r ch = 2.41 fm 67% s, 31% p dσ/dε n- 9 Li (mb/mev) 60 40 20 Include spin of 9 Li; I π = 3/2 Exp. data 1-, 27% 2-, 40% 1+, 12% 2+, 19% total P1I P3 P5 0 0 0.5 1 1.5 2 ε 9 n- Li (MeV) d 5/2 resonance not required to explain the data Data from Aksyutina et al. [PLB 666 (2008) 430] J. Casal, Fiera di Primiero 2017 p. 13

GSI data TC calculations Transfer reaction Transfer reaction 11 Li(p, d) 10 Li IRIS at TRIUMF, 5.7 AMeV Sanetullaev et al. [PLB 755 (2016) 481] weight p 1/2 : 33% J. Casal, Fiera di Primiero 2017 p. 14

GSI data TC calculations Transfer reaction DWBA calculations for 11 Li(p, d) 10 Li 10 3 dσ/dω (mb/sr) 10 2 10 1 10 0 [PLB 767 (2017) 307] 31% p 1/2 content in 11 Li Model P1I Exp. data p 1/2 (1 +,2 + ) s 1/2 (1 -, 2 - ) 10-1 0 30 60 90 120 θ c.m. (deg) Same model gives good agreement on (p, pn) and (p, d) reactions J. Casal, Fiera di Primiero 2017 p. 15

Experimental data Structure considerations Preliminary calculations 1 2 3 4 5 J. Casal, Fiera di Primiero 2017

Experimental data Structure considerations Preliminary calculations 14 Be ( 12 Be + n + n) Ground state j π = 0 +, separation energy S 2n 1.3 MeV 11 Be + n 1 2.7 0 + 2.24 2 + 2.1 Excited 12 Be components in the ground-state wave function of 14 Be are essential Inclusion of core excitations needed!! 0 + g.s. 12 Be e.g.: rotational model in NPA 733 (2004) 53 by Tarutina et al. to couple 0 + 1, 2+ 1 states J. Casal, Fiera di Primiero 2017 p. 16

Experimental data Structure considerations Preliminary calculations 14 Be(p, pn) 13 Be a) Kondo et al. 69 MeV/u PLB 690 (2010) 245 b) Aksyutina et al. 304 MeV/u PRC 87 (2013) 064316 1) l = 0, 1/2 + 2) l = 1, 1/2 3) l = 2, 5/2 + 4) l = 1, 1/2 5) l = 2,? a) decay 5/2 + 12 Be(2 + ) b) decay into 12 Be(1 ) J. Casal, Fiera di Primiero 2017 p. 17

Experimental data Structure considerations Preliminary calculations 14 Be(p, pn) 13 Be a) Kondo et al. 69 MeV/u PLB 690 (2010) 245 b) Aksyutina et al. 304 MeV/u PRC 87 (2013) 064316 P (E fn ) = (p x fn )2 p x fn 2 1) l = 0, 1/2 + 2) l = 1, 1/2 3) l = 2, 5/2 + 4) l = 1, 1/2 5) l = 2,? a) decay 5/2 + 12 Be(2 + ) b) decay into 12 Be(1 ) J. Casal, Fiera di Primiero 2017 p. 17

Experimental data Structure considerations Preliminary calculations Aksyutina et al. PRC 87 (2013) 064316 1) using two 1/2 + states No low-energy 1/2 resonance required Momentum profile gives an average: mostly l = 0, l = 2 13 Be structure not clear New data from RIKEN, 250 MeV/u. Anna Corsi et al. J. Casal, Fiera di Primiero 2017 p. 18

Experimental data Structure considerations Preliminary calculations Structure model Deformed 12 Be + n potential with core couplings in a rotational model Only 0 + (g.s.) and 2 + (2.1 MeV) of 12 Be included. Deformation parameter β 2 = 0.8 [Tarutina et al. NPA 733 (2004) 53] V (l = 0, 2) and V ls adjusted to give: - near-threshold 1/2 + state - 5/2 + resonance at 2 MeV Shallow V (l = 1) for simplicity l x, j x x N 2 s 2 y l y C I N 1 s 1 J. Casal, Fiera di Primiero 2017 p. 19

Experimental data Structure considerations Preliminary calculations Structure model Deformed 12 Be + n potential with core couplings in a rotational model Only 0 + (g.s.) and 2 + (2.1 MeV) of 12 Be included. Deformation parameter β 2 = 0.8 [Tarutina et al. NPA 733 (2004) 53] V (l = 0, 2) and V ls adjusted to give: - near-threshold 1/2 + state - 5/2 + resonance at 2 MeV Shallow V (l = 1) for simplicity l x, j x x N 2 s 2 y l y C I N 1 s 1 Three-body calculations: 14 Be ( 12 Be + n + n) 0 + g.s. fixed at S 2n (exp) 1.3 MeV About 60% of l x = 0 and 35% of I = 2 + J. Casal, Fiera di Primiero 2017 p. 19

Experimental data Structure considerations Preliminary calculations Multichannel problem Two-body coupling order: {(L, s 2 )J, I}J T {L J I}J T }{{} s.p. x I N 2 s C Example: 2 L, J 13 Be(5/2 + ): {d 5/2 0 + }, {s 1/2 2 + }, {d 3/2 2 + }, {d 5/2 2 + } So (up to L max = 2) we have 4 asymptotic channels The w.f. for each channel comprises 4 components 2b 3b overlaps mix them One contribution to the cross section for each asymptotic channel Similar for other J T configurations J. Casal, Fiera di Primiero 2017 p. 20

Experimental data Structure considerations Preliminary calculations 14 Be(p, pn) 13 Be @ 250 MeV/u data from RIKEN (A. Corsi) dσ/dε n- 12 Be (mb/mev) 40 30 20 10 1/2 + [s1/2 0 + ] 5/2 + [d5/2 0 + ] 5/2 + [s1/2 2 + ] 3/2 + [s1/2 2 + ] PRELIMINARY total new data folded with σ = 0.25 ε fn 0 0 1 2 3 0 1 2 3 4 ε 12 n- Be (MeV) Virtual state does not fit - too large scattering length Missing cross section at high ε J. Casal, Fiera di Primiero 2017 p. 21

Experimental data Structure considerations Preliminary calculations 14 Be(p, pn) 13 Be @ 250 MeV/u data from RIKEN (A. Corsi) 40 dσ/dε n- 12 Be (mb/mev) 30 20 10 PRELIMINARY new data P1 P2 P3 P4 0 0 1 2 3 4 ε 12 n- Be (MeV) The 1/2 + state cannot account for the low-energy peak J. Casal, Fiera di Primiero 2017 p. 22

Experimental data Structure considerations Preliminary calculations 14 Be(p, pn) 13 Be @ 250 MeV/u data from RIKEN (A. Corsi) dσ/dε n- 12 Be (mb/mev) 30 25 20 15 10 5 PRELIMINARY new data 1/2 + [s1/2 0 + ] 1/2 - [p1/2 0 + ] 5/2 + [d5/2 0 + ] 5/2 + [s1/2 2 + ] 3/2 - [p3/2 0 + ] 3/2 - [p1/2 2 + ] total 0 0 1 2 3 4 ε 12 n- Be (MeV) A low-energy 1/2 resonance improves agreement J. Casal, Fiera di Primiero 2017 p. 23

1 2 3 4 5 J. Casal, Fiera di Primiero 2017

Transfer to Continuum (TC) framework to describe (p, pn) reactions induced by 3b projectiles; reduces to DWBA for (p, d) transfer. Structure information contained in ϕ q 2b Φg.s. 3b overlaps. Provides absolute cross sections. 11 Li(p, pn) 10 Li: including the spin of 9 Li improves agreement in the relative energy spectrum. Same model gives also a good agreement for (p, d) reaction. Our model is consistent with 31% of p-waves in 11 Li, in agreement with recent experimental estimations. No need for a d resonance in 10 Li at low energies. 14 Be(p, pn) 13 Be: contribution from excited-core components can be included in a rotational model. The analysis is ongoing. J. Casal, Fiera di Primiero 2017 p. 24

Transfer to Continuum (TC) framework to describe (p, pn) reactions induced by 3b projectiles; reduces to DWBA for (p, d) transfer. Structure information contained in ϕ q 2b Φg.s. 3b overlaps. Provides absolute cross sections. 11 Li(p, pn) 10 Li: including the spin of 9 Li improves agreement in the relative energy spectrum. Same model gives also a good agreement for (p, d) reaction. Our model is consistent with 31% of p-waves in 11 Li, in agreement with recent experimental estimations. No need for a d resonance in 10 Li at low energies. 14 Be(p, pn) 13 Be: contribution from excited-core components can be included in a rotational model. The analysis is ongoing. This is a lot of work! 14 Be; also 8 He, 17 B, 17 Ne... Momentum profile, missing momentum, opening angle... J. Casal, Fiera di Primiero 2017 p. 24

Recent advances and challenges in the description of nuclear reactions at the limit of stability ECT* Workshop 5-9 March 2018 Trento, Italy Pierre Capel Jose A. Lay Antonio M. Moro Jesu s Casal J. Casal, Fiera di Primiero 2017 p. 25

J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Halo nuclei Small separation energy of valence nucleons Large interaction cross sections Extended radius due to diffuse tail of the w.f. Discovered in the 80s [ 11 Li; Tanihata et al.] Available in Radioactive Ion Beam facilities Assess structure knowledge gained from stable nuclei Explore the edges of the nuclear landscape Study the extremes of stability Two-nucleon halo systems are Borromean, which can be naturally described within three-body models. J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Basis states: ψ iβjµ (ρ, Ω) = ρ 5/2 U iβ (ρ)y βjµ (Ω) β {K, l x, l y, l, S x, j ab } defines a channel Y βjµ (Ω) are states of good total angular momentum j Expanded in hyperspherical harmonics (HH) Υ lxly Klm (Ω) { [ } Y βjµ (Ω) = Υ lxly Klm (Ω) χ S x κ I ]j ab Eigenfunctions of the hypermomentum operator K 2 Υ lxly Klm l (Ω) = ϕ lxly K (α) [ Y lx ( x) Y ly (ŷ) ] l, ϕ lxly lxly K (α) = NK (sin α)lx (cos α) ly P lx+ 1 2,ly+ 1 2 n (cos 2α) where P a,b n is a Jacobi polynomial of order n = (K l x l y )/2 jµ J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li K is the hypermomentum, K2 Υ lxly Klm = K(K + 4)Υlxly Klm l = l x + l y is the total orbital angular momentum S x the spin of the particles in subsystem x j ab = l + S x I the spin of the third particle j = j ab + I the total angular momentum χ σ S x the spin wave function of the particles related by x κ ι I the spin wave function of the third particle J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Electromagnetic transition probabilities (O = E, M) ( ) 2λ + 1 B(Oλ)(ε n ) = B(Oλ; n 0 j 0 nj) = n 0 j 0 Ôλ nj 2 4π J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Electromagnetic transition probabilities (O = E, M) ( ) 2λ + 1 B(Oλ)(ε n ) = B(Oλ; n 0 j 0 nj) = n 0 j 0 Ôλ nj 2 4π Electric transitions Q λmλ (x k, y k ) = ( ) 4π 1/2 3 Z q e rq λ Y λmλ ( r q ) 2λ + 1 q=1 J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Electromagnetic transition probabilities (O = E, M) ( ) 2λ + 1 B(Oλ)(ε n ) = B(Oλ; n 0 j 0 nj) = n 0 j 0 Ôλ nj 2 4π Electric transitions Q λmλ (x k, y k ) = Energy distribution ( ) 4π 1/2 3 Z q e rq λ Y λmλ ( r q ) 2λ + 1 q=1 db(oλ) (ε, w) = dε n D(ε, ε n, w)b(oλ)(ε n ) D(ε, ε n, w) are Poisson distributions with w width parameter J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Factorization of the cross section dσ LJJ T dε x C LJJ T K(E)η LJJ T (E) Structure form factors (SF): η LJJ T (E) d y ψ LJJT M T (E, y) 2 J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Factorization of the cross section dσ LJJ T dε x C LJJ T K(E)η LJJ T (E) dσ/de n 9 Li (mb/mev) 100 10 1 P3 model solid: full TC s 1/2 C = 20.20 p 1/2 C = 14.67 Structure form factors (SF): dashed: scaled SF η LJJ T (E) d y ψ LJJT M T (E, y) 2 dσ/de n 9 Li (mb/mev) 100 10 1 P1I model 1 - C = 14.78 2 - C = 16.39 1 + C = 15.09 2 + C = 14.60 0.1 0 0.5 1 1.5 2 E 9 n Li (MeV) J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li Factorization of the cross section dσ LJJ T dε x C LJJ T K(E)η LJJ T (E) dσ/de n 9 Li (mb/mev) 100 10 1 P3 model solid: full TC s 1/2 C = 20.20 p 1/2 C = 14.67 Structure form factors (SF): dashed: scaled SF η LJJ T (E) Correct up to certain extent BUT!! ratio depends on L, J, J T d y ψ LJJT M T (E, y) 2 dσ/de n 9 Li (mb/mev) 100 10 1 P1I model 1 - C = 14.78 2 - C = 16.39 1 + C = 15.09 2 + C = 14.60 reaction calc. to obtain relative weights less ambiguous than fitting 0.1 0 0.5 1 1.5 2 E 9 n Li (MeV) J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li 9 Be photodissociation cross section σ γ (mb) 2 1.5 1 0.5 1/2 + E1 3/2 + E1 5/2 + E1 5/2 - M1 1/2 - M1 Total 0 0 1 2 3 ε (MeV) J. Casal, Fiera di Primiero 2017 PRC 90 (044304) 2014

Appendix A HH expansion EXTRA: Dipole response 11 Li 9 Be photodissociation cross section σ γ (mb) 2 1.5 1 0.5 Arnold (2012) Sumiyoshi (2002) THO de Diego (2014) Garrido (2011) 0 0 1 2 3 ε (MeV) J. Casal, Fiera di Primiero 2017 PRC 90 (044304) 2014

Appendix A HH expansion EXTRA: Dipole response 11 Li Continuum of 11 Li: Dipole response 4.0 db(e1)/dε (e 2 fm 2 MeV -1 ) 3.0 2.0 1.0 exclusive RIKEN data inclusive TRIUMF data 3b model res. at 0.69 MeV PRL 110 (2013) 142701 3b model with 9 Li correlations PRC 87 (2013) 034606 0.0 0 0.5 1 1.5 2 2.5 3 ε (MeV) Large discrepancies between experiments and theory J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li 2.0 db(e1)/dε (e 2 fm 2 MeV -1 ) 1.5 1.0 0.5 PRELIMINARY 1/2 + 3/2 + 5/2 + total no 9 Li spin 0.0 0 0.5 1 1.5 2 2.5 3 ε (MeV) Again same model P1I seems reasonable J. Casal, Fiera di Primiero 2017

Appendix A HH expansion EXTRA: Dipole response 11 Li 2.0 db(e1)/dε (e 2 fm 2 MeV -1 ) 1.5 1.0 0.5 PRELIMINARY RIKEN data total no 9 Li spin folded with resolution 0.17 ε 0.0 0 0.5 1 1.5 2 2.5 3 ε (MeV) Again same model P1I seems reasonable J. Casal, Fiera di Primiero 2017