Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Similar documents
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Supporting information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Seth B. Harkins and Jonas C. Peters

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Supplementary Information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information

Structure Report for J. Reibenspies

Supporting Information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Supporting Information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Supporting Information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts

Supporting Information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Supplementary Information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

Supporting Information. Table of Contents

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

J. Org. Chem., 1998, 63(13), , DOI: /jo980296f

Stereoselective Synthesis of (-) Acanthoic Acid

Supporting Information

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supplementary Information. Single Crystal X-Ray Diffraction

Supporting Information. for

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information. Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces

Supporting Information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

SUPPLEMENTARY MATERIAL

Supporting Information

Supporting Information

Electronic Supplementary Information

Supporting Information

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

1, The crystal data of TAHD and TAND S2-S3. 2, The thermal analysis of HTAHD, TAHD, HTAND and. 3, The AFM images of TAHD and TAND S6

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

A Total Synthesis of Paeoveitol

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Supporting Infromation

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Copper Mediated Fluorination of Aryl Iodides

Lead-free double-halide perovskite Cs 3 BiBr 6 with well-defined crystal structure and high thermal stability for optoelectronics

List of contents: 1. Table S1 of The crystallographic and refinement data of 1, 2, and TableS2 of Bond lengths and bond angles of 1 3

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Supporting Information for XXXXXXX

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Supporting Information

Wavelength (nm) Figure 1: Absorption spectra of ferrocene carboxaldehyde andferrocenyl 2,4- thiazolidinedione conjugates (1 and 2) in CH 2 Cl 2.

Exploring the Binding of Barbital to a Synthetic Macrocyclic Receptor; a Charge Density

,

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Crystal structure analysis of N,2-diphenylacetamide

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.1, pp , 2015

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Manganese-Calcium Clusters Supported by Calixarenes

Crystal structure of DL-Tryptophan at 173K

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Photoactive and physical properties of an azobenzene-containing coordination framework

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Enantiospecific Synthesis of both Enantiomers of the Longtailed Mealybug Pheromone and their Evaluation in a New Zealand Vineyard

Supplementary Information for:

Research Article. Synthesis and crystal structure of 1,3-diisopropyl-4,5-dimethylimidazolium 4- methyl-benzenesulfinate

Transcription:

Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany Supporting Information * To whom correspondence should be addressed. Phone: +49-931-888-5250. Fax: +49-931-888-4609. E-mail: r.tacke@mail.uni-wuerzburg.de. S1

Figure S1. Molecular structure of 5 in the crystal (probability level of displacement ellipsoids 50%). Figure S2. Molecular structures of the two crystallographically independent molecules in the crystal of 6 (probability level of displacement ellipsoids 50%). S2

Table S1. Crystal data and structure refinement for 5. Identification code 5 Empirical formula C 19 H 33 BO 2 Si 2 Formula weight 360.44 Temperature Wavelength 193(2) K 0.71073 Å Crystal system, space group Monoclinic, P2 1 /c Unit cell dimensions a = 15.5982(19) Å = 90 deg. b = 13.2100(15) Å = 108.847(12) deg. c = 11.1157(12) Å = 90 deg. Volume 2167.6(4) Å 3 Z, Calculated density 4, 1.104 Mg/m 3 Absorption coefficient 0.172 mm 1 F(000) 784 Crystal size range for data collection 0.5 x 0.5 x 0.4 mm 3.08 to 27.95 deg. Limiting indices -20 h 20, -17 k 17, -14 l 14 Reflections collected / unique 24408 / 5141 [R(int) = 0.0695] Completeness to = 27.95 98.6 % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 5141 / 0 / 226 Goodness-of-fit on F 2 1.038 Final R indices [I>2(I)] R1 = 0.0498, wr2 = 0.1012 R indices (all data) R1 = 0.0601, wr2 = 0.1072 Largest diff. peak and hole 0.344 and -0.195 e Å 3 S3

Table S2. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Si1 4292(1) 5619(1) 7074(1) 30(1) Si2 2529(1) 6872(1) 7708(1) 28(1) B 1879(1) 4160(1) 2843(1) 26(1) O1 2596(1) 3656(1) 2667(1) 36(1) O2 1093(1) 4047(1) 1848(1) 36(1) C1 4750(1) 4319(2) 7564(2) 56(1) C2 4947(1) 6231(2) 6128(2) 48(1) C3 4395(1) 6401(2) 8531(2) 47(1) C4 3551(1) 6366(2) 8971(2) 42(1) C5 1511(1) 6890(1) 8244(2) 42(1) C6 2749(2) 8186(1) 7251(2) 54(1) C7 2342(1) 6020(1) 6285(1) 25(1) C8 3069(1) 5512(1) 6041(1) 24(1) C9 2866(1) 4912(1) 4941(1) 25(1) C10 1990(1) 4806(1) 4067(1) 24(1) C11 1274(1) 5318(1) 4318(1) 26(1) C12 1466(1) 5900(1) 5424(1) 27(1) C13 310(1) 5280(2) 3429(2) 41(1) C14 2234(1) 3023(1) 1535(1) 34(1) C15 1337(1) 3573(1) 813(1) 34(1) C16 2082(2) 1963(1) 1997(2) 51(1) C17 2929(1) 2978(2) 843(2) 47(1) C18 561(1) 2892(2) 70(2) 53(1) C19 1455(2) 4440(1) -28(2) 47(1) S4

Table S3. Bond lengths [Å] and angles [deg] for 5. Si1-C2 1.8708(19) Si1-C1 1.8715(19) Si1-C3 1.8834(17) Si1-C8 1.8873(14) Si2-C5 1.8688(18) Si2-C6 1.8708(19) Si2-C4 1.8740(18) Si2-C7 1.8854(14) B-O2 1.3682(18) B-O1 1.3696(19) B-C10 1.5674(19) O1-C14 1.4639(16) O2-C15 1.4641(18) C3-C4 1.548(2) C7-C12 1.4009(19) C7-C8 1.4180(18) C8-C9 1.4040(18) C9-C10 1.4041(18) C10-C11 1.4091(19) C11-C12 1.3975(19) C11-C13 1.5105(19) C14-C17 1.519(2) C14-C16 1.536(2) C14-C15 1.551(2) C15-C18 1.519(2) C15-C19 1.527(2) C2-Si1-C1 109.48(11) C2-Si1-C3 109.60(9) C1-Si1-C3 109.57(10) C2-Si1-C8 108.55(7) C1-Si1-C8 108.93(8) C3-Si1-C8 110.69(7) C5-Si2-C6 108.91(9) C5-Si2-C4 111.72(8) C6-Si2-C4 110.39(10) C5-Si2-C7 110.98(7) C6-Si2-C7 108.54(7) C4-Si2-C7 106.24(7) O2-B-O1 113.06(12) O2-B-C10 125.49(13) O1-B-C10 121.44(12) B-O1-C14 107.11(11) B-O2-C15 106.86(12) C4-C3-Si1 114.21(12) C3-C4-Si2 110.90(12) C12-C7-C8 118.66(12) C12-C7-Si2 119.58(10) C8-C7-Si2 121.74(10) C9-C8-C7 117.62(12) C9-C8-Si1 118.16(10) C7-C8-Si1 124.20(10) C8-C9-C10 123.72(12) C9-C10-C11 118.08(12) C9-C10-B 117.78(12) C11-C10-B 124.08(12) C12-C11-C10 118.68(12) C12-C11-C13 118.62(13) C10-C11-C13 122.69(12) C11-C12-C7 123.22(12) S5

O1-C14-C17 108.50(13) O1-C14-C16 106.94(12) C17-C14-C16 110.26(15) O1-C14-C15 102.17(11) C17-C14-C15 115.40(14) C16-C14-C15 112.86(15) O2-C15-C18 108.50(14) O2-C15-C19 105.82(13) C18-C15-C19 110.17(15) O2-C15-C14 102.34(11) C18-C15-C14 115.53(15) C19-C15-C14 113.60(14) S6

Table S4. Anisotropic displacement parameters (Å 2 x 10 3 ) for 5. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U11 +... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Si1 25(1) 36(1) 25(1) -6(1) 2(1) 1(1) Si2 35(1) 27(1) 23(1) -6(1) 10(1) -1(1) B 29(1) 27(1) 22(1) -2(1) 6(1) -3(1) O1 34(1) 43(1) 25(1) -13(1) 3(1) 4(1) O2 32(1) 47(1) 25(1) -12(1) 4(1) -2(1) C1 46(1) 48(1) 57(1) 4(1) -8(1) 12(1) C2 34(1) 66(1) 44(1) -8(1) 13(1) -10(1) C3 33(1) 70(1) 34(1) -22(1) 5(1) -5(1) C4 38(1) 60(1) 24(1) -9(1) 5(1) 1(1) C5 44(1) 50(1) 34(1) -8(1) 17(1) 2(1) C6 87(2) 31(1) 52(1) -10(1) 33(1) -11(1) C7 29(1) 23(1) 21(1) 0(1) 6(1) 1(1) C8 26(1) 25(1) 20(1) -1(1) 5(1) 0(1) C9 26(1) 26(1) 23(1) -3(1) 6(1) 1(1) C10 28(1) 23(1) 19(1) 0(1) 6(1) -2(1) C11 25(1) 28(1) 22(1) 1(1) 4(1) 0(1) C12 27(1) 29(1) 24(1) -1(1) 7(1) 4(1) C13 26(1) 57(1) 33(1) -10(1) 1(1) 2(1) C14 44(1) 33(1) 23(1) -9(1) 9(1) -1(1) C15 40(1) 37(1) 23(1) -9(1) 7(1) -5(1) C16 84(1) 31(1) 38(1) -3(1) 22(1) 5(1) C17 49(1) 55(1) 39(1) -14(1) 18(1) 1(1) C18 51(1) 62(1) 38(1) -20(1) 3(1) -16(1) C19 68(1) 42(1) 27(1) -1(1) 10(1) 3(1) S7

Table S5. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for 5. x y z U(eq) H1A 4629 3889 6809 84 H1B 4457 4030 8143 84 H1C 5405 4359 7996 84 H2A 5597 6180 6593 72 H2B 4775 6946 5989 72 H2C 4813 5888 5306 72 H3A 4926 6161 9235 57 H3B 4511 7114 8353 57 H4A 3664 6773 9755 50 H4B 3436 5658 9170 50 H5A 1646 7279 9034 63 H5B 1348 6196 8392 63 H5C 1003 7206 7587 63 H6A 2193 8463 6648 81 H6B 3226 8168 6853 81 H6C 2944 8613 8011 81 H9 3348 4559 4780 30 H12 979 6230 5600 32 H13A -97 5557 3859 61 H13B 142 4577 3183 61 H13C 258 5682 2668 61 H16A 2645 1721 2619 76 H16B 1897 1498 1272 76 H16C 1606 1995 2395 76 H17A 3074 3666 644 70 H17B 2681 2592 54 70 H17C 3480 2646 1386 70 H18A 409 2424 656 79 H18B 743 2505-559 79 H18C 31 3307-365 79 H19A 904 4854-291 70 H19B 1567 4164-782 70 H19C 1971 4860 450 70 S8

Table S6. Torsion angles [deg] for 5. O2-B-O1-C14-9.01(17) C10-B-O1-C14 172.10(13) O1-B-O2-C15-10.65(17) C10-B-O2-C15 168.19(13) C2-Si1-C3-C4 148.04(15) C1-Si1-C3-C4-91.81(17) C8-Si1-C3-C4 28.34(17) Si1-C3-C4-Si2-61.19(18) C5-Si2-C4-C3-177.47(12) C6-Si2-C4-C3-56.13(15) C7-Si2-C4-C3 61.36(14) C5-Si2-C7-C12 30.56(13) C6-Si2-C7-C12-89.08(14) C4-Si2-C7-C12 152.20(12) C5-Si2-C7-C8-150.96(12) C6-Si2-C7-C8 89.39(14) C4-Si2-C7-C8-29.32(13) C12-C7-C8-C9-0.06(19) Si2-C7-C8-C9-178.55(10) C12-C7-C8-Si1 178.25(10) Si2-C7-C8-Si1-0.24(17) C2-Si1-C8-C9 62.59(13) C1-Si1-C8-C9-56.55(14) C3-Si1-C8-C9-177.08(12) C2-Si1-C8-C7-115.71(13) C1-Si1-C8-C7 125.15(14) C3-Si1-C8-C7 4.62(15) C7-C8-C9-C10 1.2(2) Si1-C8-C9-C10-177.22(10) C8-C9-C10-C11-1.0(2) C8-C9-C10-B 176.50(13) O2-B-C10-C9-174.24(13) O1-B-C10-C9 4.5(2) O2-B-C10-C11 3.1(2) O1-B-C10-C11-178.19(13) C9-C10-C11-C12-0.40(19) B-C10-C11-C12-177.70(13) C9-C10-C11-C13 178.37(14) B-C10-C11-C13 1.1(2) C10-C11-C12-C7 1.6(2) C13-C11-C12-C7-177.26(14) C8-C7-C12-C11-1.3(2) Si2-C7-C12-C11 177.21(11) B-O1-C14-C17 145.58(14) B-O1-C14-C16-95.50(16) B-O1-C14-C15 23.26(15) B-O2-C15-C18 146.80(15) B-O2-C15-C19-94.99(15) B-O2-C15-C14 24.22(15) O1-C14-C15-O2-28.49(14) C17-C14-C15-O2-145.98(13) C16-C14-C15-O2 85.99(14) O1-C14-C15-C18-146.17(14) C17-C14-C15-C18 96.33(18) C16-C14-C15-C18-31.70(19) O1-C14-C15-C19 85.10(15) C17-C14-C15-C19-32.39(19) C16-C14-C15-C19-160.42(13) S9

Table S7. Crystal data and structure refinement for 6. Identification code 6 Empirical formula C 13 H 22 OSi 2 Formula weight 250.49 Temperature Wavelength 173(2) K 0.71073 Å Crystal system, space group Triclinic, P1 Unit cell dimensions a = 9.2211(18) Å = 92.22(3) deg. b = 10.489(2) Å = 102.27(3) deg. c = 16.445(3) Å = 100.55(3) deg. Volume 1522.9(5) Å 3 Z, Calculated density 4, 1.093 Mg/m 3 Absorption coefficient 0.214 mm 1 F(000) 544 Crystal size range for data collection 0.3 x 0.3 x 0.1 mm 2.27 to 28.00 deg. Limiting indices -12 h 12, -13 k 13, -21 l 21 Reflections collected / unique 22192 / 6771 [R(int) = 0.0400] Completeness to = 28.00 92.1 % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 6771 / 0 / 301 Goodness-of-fit on F 2 1.027 Final R indices [I>2(I)] R1 = 0.0413, wr2 = 0.1022 R indices (all data) R1 = 0.0654, wr2 = 0.1132 Largest diff. peak and hole 0.546 and -0.587 e Å 3 S10

Table S8. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Si1 6409(1) 4093(1) 1361(1) 38(1) Si2 8331(1) 1924(1) 557(1) 33(1) C1 4499(3) 3250(3) 1466(2) 65(1) C2 6710(3) 5848(3) 1729(2) 55(1) C3 6610(3) 3910(3) 253(1) 58(1) C4 6613(3) 2478(3) -14(1) 57(1) C5 8088(3) 114(2) 392(2) 57(1) C6 10012(3) 2717(2) 168(1) 47(1) C7 8641(2) 2415(2) 1705(1) 27(1) C8 7864(2) 3302(2) 2022(1) 26(1) C9 8178(2) 3596(2) 2892(1) 25(1) C10 9190(2) 3032(2) 3434(1) 23(1) C11 9965(2) 2151(2) 3139(1) 26(1) C12 9675(2) 1887(2) 2276(1) 29(1) C13 10997(2) 1488(2) 3731(1) 39(1) O1 9464(1) 3301(1) 4290(1) 27(1) Si21 5780(1) 9102(1) 3418(1) 27(1) Si22 2329(1) 6882(1) 2824(1) 27(1) O21 7950(1) 5179(1) 4735(1) 28(1) C21 6984(3) 10129(2) 4364(1) 42(1) C22 6703(3) 9326(2) 2513(2) 47(1) C23 3865(2) 9534(2) 3141(1) 35(1) C24 2751(2) 8558(2) 2459(1) 36(1) C25 1025(2) 6873(2) 3558(1) 41(1) C26 1424(2) 5660(2) 1917(1) 39(1) C27 4148(2) 6440(2) 3392(1) 23(1) C28 5536(2) 7339(2) 3656(1) 23(1) C29 6803(2) 6899(2) 4095(1) 23(1) C30 6717(2) 5616(2) 4284(1) 22(1) C31 5374(2) 4694(2) 4017(1) 22(1) C32 4124(2) 5139(2) 3578(1) 24(1) C33 5311(2) 3296(2) 4203(1) 30(1) S11

Table S9. Bond lengths [Å] and angles [deg] for 6. Si1-C1 1.867(3) Si1-C2 1.867(3) Si1-C3 1.877(2) Si1-C8 1.879(2) Si2-C4 1.865(3) Si2-C6 1.869(2) Si2-C5 1.873(3) Si2-C7 1.8853(19) C3-C4 1.548(4) C7-C12 1.396(3) C7-C8 1.419(2) C8-C9 1.408(2) C9-C10 1.380(3) C10-O1 1.385(2) C10-C11 1.398(2) C11-C12 1.395(3) C11-C13 1.496(3) Si21-C22 1.868(2) Si21-C23 1.871(2) Si21-C21 1.873(2) Si21-C28 1.8874(18) Si22-C26 1.870(2) Si22-C25 1.875(2) Si22-C24 1.880(2) Si22-C27 1.885(2) O21-C30 1.383(2) C23-C24 1.548(3) C27-C32 1.408(2) C27-C28 1.416(2) C28-C29 1.402(3) C29-C30 1.384(2) C30-C31 1.400(2) C31-C32 1.391(3) C31-C33 1.503(2) C1-Si1-C2 109.27(13) C1-Si1-C3 110.98(14) C2-Si1-C3 110.69(14) C1-Si1-C8 108.12(12) C2-Si1-C8 110.06(10) C3-Si1-C8 107.67(10) C4-Si2-C6 109.38(13) C4-Si2-C5 110.43(14) C6-Si2-C5 109.36(12) C4-Si2-C7 108.87(9) C6-Si2-C7 109.19(10) C5-Si2-C7 109.59(11) C4-C3-Si1 111.1(2) C3-C4-Si2 112.27(17) C12-C7-C8 118.02(16) C12-C7-Si2 119.06(13) C8-C7-Si2 122.93(15) C9-C8-C7 118.19(18) C9-C8-Si1 117.29(13) C7-C8-Si1 124.51(13) C10-C9-C8 121.80(16) C9-C10-O1 121.50(15) C9-C10-C11 121.20(16) O1-C10-C11 117.30(16) C12-C11-C10 116.68(17) S12

C12-C11-C13 122.30(17) C10-C11-C13 120.96(17) C11-C12-C7 124.08(17) C22-Si21-C23 109.36(11) C22-Si21-C21 110.31(11) C23-Si21-C21 110.80(10) C22-Si21-C28 109.24(9) C23-Si21-C28 108.34(9) C21-Si21-C28 108.75(9) C26-Si22-C25 109.60(10) C26-Si22-C24 110.52(10) C25-Si22-C24 109.16(11) C26-Si22-C27 109.19(9) C25-Si22-C27 109.11(9) C24-Si22-C27 109.23(9) C24-C23-Si21 112.28(14) C23-C24-Si22 112.33(14) C32-C27-C28 117.76(16) C32-C27-Si22 118.07(13) C28-C27-Si22 124.16(13) C29-C28-C27 118.81(16) C29-C28-Si21 118.09(13) C27-C28-Si21 123.08(14) C30-C29-C28 121.45(15) O21-C30-C29 121.91(15) O21-C30-C31 116.77(15) C29-C30-C31 121.31(16) C32-C31-C30 116.81(16) C32-C31-C33 122.50(15) C30-C31-C33 120.69(16) C31-C32-C27 123.82(16) S13

Table S10. Anisotropic displacement parameters (Å 2 x 10 3 ) for 6. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U11 +... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Si1 37(1) 51(1) 25(1) -6(1) -3(1) 24(1) Si2 36(1) 36(1) 28(1) -8(1) 7(1) 9(1) C1 34(1) 88(2) 68(2) -16(2) -1(1) 22(1) C2 74(2) 55(2) 39(1) -1(1) -6(1) 40(1) C3 70(2) 85(2) 26(1) 0(1) -1(1) 52(2) C4 51(1) 87(2) 31(1) -22(1) -4(1) 29(1) C5 74(2) 43(1) 52(1) -14(1) 21(1) 3(1) C6 54(1) 50(1) 40(1) 3(1) 19(1) 11(1) C7 26(1) 26(1) 29(1) -2(1) 7(1) 3(1) C8 25(1) 29(1) 24(1) -4(1) 4(1) 6(1) C9 23(1) 27(1) 27(1) -1(1) 4(1) 8(1) C10 21(1) 24(1) 24(1) -1(1) 3(1) 3(1) C11 21(1) 25(1) 33(1) 1(1) 4(1) 5(1) C12 27(1) 26(1) 36(1) -3(1) 9(1) 8(1) C13 34(1) 46(1) 41(1) 5(1) 3(1) 21(1) O1 26(1) 31(1) 24(1) -1(1) 0(1) 11(1) Si21 33(1) 20(1) 30(1) 3(1) 7(1) 5(1) Si22 25(1) 29(1) 26(1) 3(1) 3(1) 8(1) O21 23(1) 26(1) 32(1) -1(1) 0(1) 8(1) C21 48(1) 25(1) 48(1) 0(1) -1(1) 4(1) C22 58(1) 35(1) 52(1) 11(1) 26(1) 1(1) C23 44(1) 26(1) 37(1) 4(1) 5(1) 13(1) C24 38(1) 34(1) 33(1) 8(1) 1(1) 12(1) C25 32(1) 54(1) 39(1) 6(1) 9(1) 13(1) C26 36(1) 39(1) 35(1) -1(1) -2(1) 4(1) C27 24(1) 22(1) 24(1) 1(1) 6(1) 4(1) C28 25(1) 22(1) 22(1) 2(1) 6(1) 5(1) C29 22(1) 22(1) 26(1) -1(1) 6(1) 3(1) C30 21(1) 23(1) 22(1) 1(1) 5(1) 8(1) C31 23(1) 20(1) 25(1) 1(1) 8(1) 5(1) C32 22(1) 23(1) 27(1) 1(1) 5(1) 3(1) C33 30(1) 22(1) 39(1) 4(1) 9(1) 6(1) S14

Table S11. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for 6. x y z U(eq) H1A 3721 3649 1126 97 H1B 4434 3330 2053 97 H1C 4338 2327 1276 97 H2A 7702 6298 1661 83 H2B 6670 5925 2319 83 H2C 5917 6242 1398 83 H3A 5762 4201-121 69 H3B 7566 4470 196 69 H4A 6564 2388-621 68 H4B 5701 1912 94 68 H5A 7233-304 617 85 H5B 9012-159 679 85 H5C 7890-142 -207 85 H6A 9880 2427-422 70 H6B 10927 2476 495 70 H6C 10109 3664 226 70 H9 7679 4199 3112 31 H12 10213 1311 2062 35 H13A 11802 2142 4084 59 H13B 11444 916 3413 59 H13C 10419 970 4082 59 H1 8920 3816 4399 41 H2 8608 5818 4979 41 H21A 7953 9844 4523 64 H21B 6463 10037 4825 64 H21C 7166 11042 4237 64 H22A 6846 10243 2393 71 H22B 6059 8788 2022 71 H22C 7688 9064 2648 71 H23A 3447 9551 3647 42 H23B 3964 10416 2940 42 H24A 3190 8512 1961 43 H24B 1794 8879 2291 43 H25A 57 7059 3258 61 H25B 1482 7540 4020 61 H25C 852 6017 3777 61 H26A 1213 4793 2118 59 H26B 2110 5663 1536 59 H26C 476 5884 1621 59 H29 7741 7494 4267 28 H32 3201 4528 3393 29 H33A 4276 2804 3999 45 H33B 5620 3246 4807 45 H33C 5998 2925 3925 45 S15

Table S12. Torsion angles [deg] for 6. C1-Si1-C3-C4-67.4(2) C2-Si1-C3-C4 171.09(18) C8-Si1-C3-C4 50.7(2) Si1-C3-C4-Si2-67.3(2) C6-Si2-C4-C3-72.0(2) C5-Si2-C4-C3 167.61(18) C7-Si2-C4-C3 47.2(2) C4-Si2-C7-C12 167.40(16) C6-Si2-C7-C12-73.24(17) C5-Si2-C7-C12 46.52(18) C4-Si2-C7-C8-12.38(19) C6-Si2-C7-C8 106.97(17) C5-Si2-C7-C8-133.26(17) C12-C7-C8-C9-0.1(3) Si2-C7-C8-C9 179.73(13) C12-C7-C8-Si1-178.86(13) Si2-C7-C8-Si1 0.9(2) C1-Si1-C8-C9-75.45(17) C2-Si1-C8-C9 43.84(18) C3-Si1-C8-C9 164.59(16) C1-Si1-C8-C7 103.37(18) C2-Si1-C8-C7-137.35(17) C3-Si1-C8-C7-16.6(2) C7-C8-C9-C10-1.1(3) Si1-C8-C9-C10 177.79(13) C8-C9-C10-O1-178.31(16) C8-C9-C10-C11 0.8(3) C9-C10-C11-C12 0.7(2) O1-C10-C11-C12 179.81(15) C9-C10-C11-C13-176.64(17) O1-C10-C11-C13 2.5(2) C10-C11-C12-C7-1.9(3) C13-C11-C12-C7 175.37(18) C8-C7-C12-C11 1.6(3) Si2-C7-C12-C11-178.20(14) C22-Si21-C23-C24 67.82(17) C21-Si21-C23-C24-170.37(14) C28-Si21-C23-C24-51.15(16) Si21-C23-C24-Si22 64.85(17) C26-Si22-C24-C23-164.80(15) C25-Si22-C24-C23 74.59(17) C27-Si22-C24-C23-44.65(17) C26-Si22-C27-C32-47.28(16) C25-Si22-C27-C32 72.49(16) C24-Si22-C27-C32-168.25(13) C26-Si22-C27-C28 133.83(15) C25-Si22-C27-C28-106.41(16) C24-Si22-C27-C28 12.85(17) C32-C27-C28-C29-0.8(2) Si22-C27-C28-C29 178.13(12) C32-C27-C28-Si21 177.43(12) Si22-C27-C28-Si21-3.7(2) C22-Si21-C28-C29 78.25(16) C23-Si21-C28-C29-162.71(13) C21-Si21-C28-C29-42.20(16) C22-Si21-C28-C27-99.97(16) C23-Si21-C28-C27 19.08(16) C21-Si21-C28-C27 139.58(15) C27-C28-C29-C30-1.0(2) Si21-C28-C29-C30-179.26(12) C28-C29-C30-O21-178.31(14) S16

C28-C29-C30-C31 2.4(2) O21-C30-C31-C32 178.70(14) C29-C30-C31-C32-2.0(2) O21-C30-C31-C33-1.3(2) C29-C30-C31-C33 178.00(15) C30-C31-C32-C27 0.2(2) C33-C31-C32-C27-179.80(15) C28-C27-C32-C31 1.2(2) Si22-C27-C32-C31-177.81(13) S17