Cold molecule studies of OH, NH, and metastable CO

Similar documents
Experiments with Stark decelerated and trapped OH radicals

Cold and ultracold collisions involving open-shell diatomic molecules

Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental symmetries. Steven Hoekstra

Magnetic Trapping of NH Molecules with 20 s Lifetimes

Why ultracold molecules?

Manipulating Rydberg atoms and molecules in the gas phase and near chip surfaces

DECELERATION OF MOLECULES

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society

Cold and Slow Molecular Beam

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Production and deceleration of a pulsed beam of metastable NH (a 1 ) radicals

arxiv:physics/ v1 [physics.atom-ph] 7 Jun 2003

arxiv: v2 [physics.chem-ph] 15 May 2008

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Experiments with Stark-decelerated and trapped molecules

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Decelerating and Trapping Large Polar Molecules

The Search for the Electron Electric Dipole Moment at JILA

arxiv: v1 [physics.atom-ph] 14 Nov 2018

Ultracold molecules - a new frontier for quantum & chemical physics

COPYRIGHTED MATERIAL. Index

Singlet triplet excitation spectrum of the CO He complex. II. Photodissociation and bound-free CO a 3 ]X 1 transitions

Effects of electric static and laser fields on cold collisions of polar molecules. Roman Krems University of British Columbia

Buffer-gas cooling of NH via the beam loaded buffer-gas method

Dynamics of \(OH(^{2}\Pi) He\) Collisions in Combined Electric and Magnetic Fields

Cold Controlled Chemistry. Roman Krems University of British Columbia

Rydberg spectroscopy of Zeeman-decelerated beams of metastable Helium molecules

Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice

Direct Cooling of Molecules

A study of the BEC-BCS crossover region with Lithium 6

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold SO 2 molecules by Stark deceleration

Positronium: Old Dog, New Tricks

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Renner-Teller Effect in Tetra-Atomic Molecules

arxiv: v2 [physics.atom-ph] 18 Mar 2010

A few issues on molecular condensates

EDM Measurements using Polar Molecules

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

ATOMIC AND LASER SPECTROSCOPY

The He CaH 2 interaction. II. Collisions at cold and ultracold temperatures

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

Introduction to cold atoms and Bose-Einstein condensation (II)

A pulsed, low-temperature beam of supersonically cooled free radical OH molecules

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Astrochemistry in temperature variable ion traps

Quantum Computing with neutral atoms and artificial ions

An Accurate Calculation of Potential Energy Curves and Transition Dipole Moment for Low-Lying Electronic States of CO

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Physics with Cold Molecules Using Buffer Gas Cooling

CO (a 3) quenching at a metal surface: Evidence of an electron transfer mediated mechanism

Slow Molecules Produced by Photodissociation

Observation of Feshbach resonances in ultracold

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

A Linear AC Trap for Polar Molecules in Their Ground State

Measurement of the electron EDM using Cold YbF Molecules:

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Collision between magnetically trapped NH molecules in the N =0,J =1 state

Lecture 3. Bose-Einstein condensation Ultracold molecules

Cross Sections: Key for Modeling

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

Excitation of high angular momentum Rydberg states

laser-cooling of molecules through optical pumping

arxiv: v1 [physics.atom-ph] 27 Oct 2013

Net Polarization of a Molecular Beam by Strong Electrostatic or Radiative Fields

Large spin relaxation rates in trapped submerged-shell atoms

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Operation of a Stark decelerator with optimum acceptance

The emission spectrum due to molecule formation through radiative association

Characterization of methanol as a magnetic field tracer in star-forming regions

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Ionization of Rydberg atoms in Intense, Single-cycle THz field

Trap Loss Due to Nonadiabatic Transitions in Electrostatically Trapped Ammonia

Cold Controlled Chemistry. Roman Krems University of British Columbia

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Experimental Storage Ring - ESR E max = 420 MeV/u, 10 Tm, electron-, stochastic- and laser cooling. Indian Institute of Technology Ropar

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Hong-Ou-Mandel effect with matter waves

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Status of the ESR And Future Options

Quantum Computation with Neutral Atoms Lectures 14-15

Study on Bose-Einstein Condensation of Positronium

Photon Interaction. Spectroscopy

Ultra-Cold Plasma: Ion Motion

YbRb A Candidate for an Ultracold Paramagnetic Molecule

1. Cold Collision Basics

Physics of and in Ion Traps

arxiv: v1 [physics.atom-ph] 16 Apr 2019

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Vibrationally exciting molecules trapped on a microchip

REPORT DOCUMENTATION PAGE

Transcription:

ACS, April 2008 p. 1/26 Cold molecule studies of OH, NH, and metastable CO Gerrit C. Groenenboom Theoretical Chemistry Institute for Molecules and Materials Radboud University Nijmegen The Netherlands

ACS, April 2008 p. 2/26 Collaborators OH, CO: FHI Berlin Joop Gilijamse Steven Hoekstra Samuel Meek Markus Metsälä Bas van de Meerakker Gerard Meijer NH: Harvard Wes Campbell Hsin-I Lu Edem Tsikata John Doyle

ACS, April 2008 p. 3/26 Cold molecule techniques 1998 buffergas cooling John Doyle, CaH 1999 Stark deceleration Gerard Meijer, CO 2001 rotating nozzle Dudley Herschbach, O 2 2001 storage ring Gerard Meijer, ND 3 2002 photoassociation Pierre Pillet, Cs 2 (trapped) 2003 filtering Gerard Rempe, NH 3 2003 Feshbach resonances Rudy Grimm, Li 2 (BEC) 2003 billiard ball collisions Dave Chandler, Ar+NO 2004 optical Stark deceleration Peter Barker, C 6 H 6 2007 reactive collision slowing Hans-Joachim Loesch, K+HBr 2007 Zeeman deceleration Nicolas Vanhaeke, H 2007 molecular synchrotron Gerard Meijer, NH 3... cavity laser cooling Yun Ye, OH (theory)... sympathetic cooling Peter Barker

ACS, April 2008 p. 4/26 Xe+OH( 2 Π 3/2f ) collision experiment cooled -70 o C LIF zone PMT Xe Stark decelerator skimmer hexapole detection laser (282 nm) pulsed valve photodissociation laser (193 nm) Bas van de Meerakker, Steven Hoekstra, Joop Gilijamse, Gerard Meijer (Berlin, 2006)

ACS, April 2008 p. 5/26 OH X( 2 Π) energy levels cm -1 250 200 3 7/2 f e + - 2 3/2 f + e - 150 100 50 2 5/2 f e - + 1 1/2 N J F 2, X 2 Π 1/2 f - e + ε p 0 1 3/2 N J f + e - ε p F 1, X 2 Π 3/2

Xe OH( 2 Π) potentials (cm 1 ) Xe OH (A ) Xe OH (A ) 180 180 50 100 100 1450 1450 150 120 90 60 30 75 125 650 75 75 450 50 50 50 θ (degrees) 150 200 175 150 120 90 60 30 θ (degrees) 100 25 850 25 125 850 150 450 200 5 6 7 8 9 10 11 12 R (a 0 ) 175 0 4 6 8 10 12 0 R (a 0 ) Molpro: RCCSD(T), aug-cc-pvqz+bond orbitals, ECP28MDF ACS, April 2008 p. 6/26

ACS, April 2008 p. 7/26 Xe+OH energy dependent cross sections 10 3 F 1 (3/2f) 10 2 F 1 (3/2e) σ (Å 2 ) 10 1 10 0 F (5/2e) 1 F (1/2) 2 F (7/2) 1 F (5/2f) 1 F (3/2) 2 0 100 200 300 400 E coll (cm 1 )

Xe+OH experimental results ACS, April 2008 p. 8/26

ACS, April 2008 p. 9/26 Xe+OH, comparison with experiment 100 σ (%) 80 60 40 20 F 1 (3/2e) F 1 (5/2e) F 1 (5/2f) 0 F 2 (1/2e) 50 100 150 200 250 300 350 400 E coll (cm 1 ) Gilijamse, Hoekstra, van de Meerakker, Groenenboom, Meijer, Science 313, 1617 (2006)

ACS, April 2008 p. 10/26 Xe+OH, convolution and Xe beam σ(e coll ) voh 2 Signal n OH n + v2 Xe Xe v OH 350 340 4 3.5 4.5 4 5 4.5 5.5 5 v Xe (m/s) 330 320 310 300 3 3 3.5 44 3.5 3.5 3.5 4 290 4.5 4 280 270 5 5.5 4.5 4.5 5 5 10 15 20 25 30 35 FWHM (%) 5

ACS, April 2008 p. 11/26 Convergence check Xe+OH: F max 10 0 10 2 10 4 10 6 3/2e 3/2f 5/2e 5/2f 1/2e 1/2f 10 8 0 20 40 60 80 100 120 F F l = 45 b = l 2µEcoll 8 bohr

ACS, April 2008 p. 12/26 Buffergas loading Buffer-gas Cooling and Loading Hot Molecules 1000 K Superconducting Magnet Coils Cold Walls < 1 K Helium Buffer Gas 10 15 cm -3 Cold Trapped Molecules John Doyle, Wes Campbell, et al., Harvard Accepts full Boltzmann distribution of source External motion, rotation thermalize quickly Vibration, spin thermalize slowly He provides dissipation in conservative trap potential

ACS, April 2008 p. 13/26 NH(v = 1) in trap vs time Number of Trapped NH(v"=1) [arb.] v=1 v"=1 A 3 Π 2 X 3 Σ - 50 100 150 200 250 300 Time [ms] W. C. Campbell, G. C. Groenenboom, H.-I Lu, E. Tsikata, and J. M. Doyle, Phys. Rev. Lett., 100, 083003 (2008)

ACS, April 2008 p. 14/26 Measured NH(v = 0, 1) trap lifetime Trapped Molecule Lifetime [ms] 350 300 250 200 150 100 50 v = 0 v = 1 0 0 2 4 6 8 10 12 14 16 18 Buffer-Gas Density [10 14 cm -3 ] W. C. Campbell, G. C. Groenenboom, H.-I Lu, E. Tsikata, and J. M. Doyle, Phys. Rev. Lett., 100, 083003 (2008)

ACS, April 2008 p. 15/26 NH X 3 Σ (v = 1) lifetime (ms) τ 1 = f 4αω 3 3c 2 v = 0,N = 1 µ(r) v = 1,N = 0 2 e2 Rosmus, Werner, 1980, PNO-CEPA 28.7 Dodd et al., 1991, MRCI/RKR 19.3 (23.9) CASSCF/MRCI aug-cc-pvtz 26.3 +rotation 29.1 +cc-pv6z 31.7 +active space (6σ, 3π) 35.1 +core-correlation 37.01 +aug-cc-pv6z 36.99 RHF+RCCSD(T) finite field 37.4 buffergas cooling experiment: 37.0 ± 0.5 ms

ACS, April 2008 p. 16/26 NH( 3 Σ ) permanent dipole moment (v = 0) Experiment, Scarl and Dalby (1974) 0.543± 0.028 ea 0 CASSCF+MRCI aug-cc-pv6z: 0.600 Paldus and Li (1996): 0.604 Conclusion: 30% more N on our sun

Radiative lifetime of OH X 2 Π 3/2 (v = 1) Van de Meerakker, Vanhaecke, van der Loo, Groenenboom, and Meijer, Phys. Rev. Lett., 95, 013003 (2005) ACS, April 2008 p. 17/26

ACS, April 2008 p. 18/26 Radiative lifetime of OH X 2 Π 3/2 (v = 1) Molpro: aug-cc-pv6z, 1σ 5σ, 1π 2π CASSCF/MRCI year τ (ms) Decay in trap 2006 59.0±2 Present calculation 2007 56.9 (57.2) HITRAN 2004 56.6 D. D. Nelson et al. 1990 55.7 S. R. Langhoff et al. 1989 57.8 S. R. Langhoff et al. 1986 81.3 H.-J. Werner et al. 1983 71.6 M. van der Loo and G. C. Groenenboom, J. Chem. Phys. 126, 114314 (2007)+erratum Application to OH Meinel system: Decrease in atomic hydrogen over the summer pole, D. E. Siskind et al., Geophys. Res. Lett. (2008), submitted

ACS, April 2008 p. 19/26 CO(a 3 Π 1 ) lifetime model 50 40 h a (r) 1 cm 1 30 20 h A,a (r) µ X,A (r) 0.5 a.u. τ 1 = v X A vx,v a 10 0 0 1.5 2 2.5 3 ev 10 8 6 4 A( 1 Π) a( 3 Π) X( 1 Σ + ) A vx,v a = 4αω3 v a,v X 3c 2 e 2 c 2 Ω,1 v A v X µ X,A v A v A h A,a v a E va E va 2 0 1.5 2 2.5 3 r (a 0 ) Thomas James, JCP 1971

ACS, April 2008 p. 20/26 CO(a 3 Π 1 ) lifetime results (ms) Experiment: 2.63 ± 0.03 Thomas James (JCP 1971): 2.93 +11% Ab initio + RKR potentials: 3.16 +20% Sykora and Vidal (JCP 1999): 3.41 +30% Jongma, Berden, Meijer (JCP 1997): 3.67± 0.2 +40% 3.4± 0.5 +30% J. Gilijamse et al., J. Chem. Phys., 127, 221102 (2007)

ACS, April 2008 p. 21/26 CO(a 3 Π 1 ) lifetime extended model lower level calculation (MCSCF/aug-cc-pVTZ) extra 1 Π intermediate states result scaled to 3.16 ms for single intermediate state 1 3.16 ms 20.0% 2 3.34 ms 27.0% 3 2.69 ms 2.4% 4 2.90 ms 10.3% 5 2.72 ms 3.4% Experiment: 2.63 ms

ACS, April 2008 p. 22/26 Check of spin-orbit coupling CO (a 3 Π Ω ) v a Ab initio Experiment error (%) 0 40.801 41.429 1.51 1 40.668 41.266 1.45 2 40.489 41.082 1.45 3 40.302 40.887 1.45 4 40.107 40.704 1.49 5 39.902 40.502 1.51 6 39.687 40.245 1.42 7 39.462 40.019 1.43 8 39.228 39.781 1.43 9 38.985 39.329 0.92 R. W. Field et al., J. Mol. Spectrosc. (1972)

ACS, April 2008 p. 23/26 CO A 1 Π X 1 Σ + transition dipole moment µ X,A (ea 0 ) 1 0.75 0.5 present Spielfiedel (1999) Kirby (1989) EOM HF EOM MCSCF r = 2.0 a 0 r = 2.5 a 0 present (ea 0 ) 0.7835 0.4131 Spielfiedel [1] 91.6% 99.1% Kirby [2] 94.9% 99.6% 0.25 CCSD-EOM(HF) 93.4% 98.0% EOM(MCSCF) 93.6% 99.4% 0 1 2 3 4 r (a ) 0 [1] A. Spielfiedel et al., Astron. Astrophys. (1999) [2] K. Kirby and D. L. Cooper, J. Chem. Phys. (1989)

ACS, April 2008 p. 24/26 CO A 1 Π X 1 Σ + oscillator strength f osc = v A 2 3 (E v A E vx ) µ va,v X 2 Present 0.177 2.4% Experiment (1993) 0.181 Other experiments: 0.187 0.195 Spielfiedel (1999) 0.160 11.5% Kirby (1989) 0.167 7.5% W. F. Chan et al., Chem. Phys. (1993) Electron energy loss spectrosc. + TRK sum-rule (7-200 ev)

CO A 1 Π(v ) dependent lifetimes (ns) 10 9.5 Experiment Fit τ (ns) 9 8.5 Ab initio 8 0 1 2 3 4 5 6 7 v Experiment: R. W. Field et al., J. Chem. Phys. (1983) Using fitted dipole: τ(co a 3 Π 1 ) = 3.66 ms. ACS, April 2008 p. 25/26

ACS, April 2008 p. 26/26 Conclusions Xe+OH: towards crossed controlled beams NH(v = 1) lifetime: 30 % more N on our sun OH(v = 1) lifetime benchmark: Meinel system CO(a 3 Π 1 ) lifetime: nonorthogonality essential, measured A 1 Π(v ) lifetimes wrong