Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Similar documents
Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Structure Report for J. Reibenspies

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Supporting Information

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Decomposition of Ruthenium Olefin Metathesis. Catalysts

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Supporting Information. for

metal-organic compounds

Supporting Information

Supplementary Information. Single Crystal X-Ray Diffraction

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Supporting Information for the Article Entitled

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

Stereoselective Synthesis of (-) Acanthoic Acid

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

metal-organic compounds

Seth B. Harkins and Jonas C. Peters

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Photoactive and physical properties of an azobenzene-containing coordination framework

Changing and challenging times for service crystallography. Electronic Supplementary Information

2-Methoxy-1-methyl-4-nitro-1H-imidazole

Supplementary Information

Supporting Information

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Supporting Information. Table of Contents

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Supporting Information

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

Supporting Information

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

metal-organic compounds

Supplementary Information

Supporting information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

metal-organic compounds

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

Supporting Information

SUPPLEMENTARY MATERIAL

metal-organic compounds

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

metal-organic compounds

Supporting Information for

metal-organic compounds

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Manganese-Calcium Clusters Supported by Calixarenes

metal-organic compounds

Impeller-like dodecameric water clusters in metal organic nanotubes

Supporting Information. Table of Contents

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

organic papers Malonamide: an orthorhombic polymorph Comment

metal-organic compounds

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Electronic Supplementary Information (ESI)

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+!

Transcription:

Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin A. Berliner Department of Chemistry and Biochemistry University of Colorado, Boulder, Colorado 80309-0215 Email: sammakia@colorado.edu Supporting Information- X-ray crystallography data for ent-11 Table 1. Crystal data for C 16 H 26 O 3. Identification code bc426 Empirical formula C 16 H 26 O 3 Formula mass 266.37 Crystal size, mm 0.36 0.23 0.15 Crystal color, habit colorless parallelepiped Crystal system monoclinic Space group P2 1 a, Å 5.521(3) b, Å 7.874(4) c, Å 18.048(8) α, 90 β, 96.83(4) γ, 90 Volume, Å 3 779.0(7) Z, formula units/cell 2 Density (calculated), Mg m -3 1.136 Absorption coefficient, mm -1 0.076 F(000) 292 Absorption correction none Range Transmission Coefficients 0.9886 and 0.9730

Page S17 Table 2. Data collection parameters for C 16 H 26 O 3. Diffractometer Siemens SMART CCD area detector Temperature, K 143(2) Radiation source sealed tube Wavelength, Å 0.71073 MoKα Monochromator graphite Cell measurement Reflections used 1607 θ range 2.826 < θ < 29.885 θ range, data collection 1.14 < θ < 27.10 Scan type ω scans Index ranges -7 h 7, -10 k 8, 0 l 23 Reflections collected 7622 Independent reflections 2760 (R(int)= 0.0576) Standard reflections 50 frames re-measured Stability of standards no decay observed

Page S18 Table 3. Structure Solution and Refinement for C 16 H 26 O 3. System used 1,2 SHELXS-97 (Sheldrick, 1990) Structure solution direct Data/ restraints/ parameters 2760 / 1/ 172 Hydrogen atoms riding, with riding isotropic U weighting scheme calc w -1 =[σ 2 2 ( )+(0.0727P) 2 ] where F o F c F o 2 2 P=( +2 ) 3 Final R indices 3 [I>2σ(I)] R1 = 0.0512, wr2 = 0.1153 Reflections observed 1842 R indices (all data) R1 = 0.0882, wr2 = 0.1304 Goodness-of-fit 4 on F 2 0.980 Absolute structure parameter 5 0(2) Largest diff. peak and hole 0.225 and -0.282 1) G. M. Sheldrick, SHELXTL, A Program for Crystal Structure Determination. Version 5.03, 1995, Siemens Analytical X-ray Instruments, Madison, Wisconsin. 2) Scattering factors (neutral atoms) are from "International Tables for Crystallography" Vol. C, D. Reidel Publishing Co. Boston, 1991. 3) R1 = F o F F o c ; wr2 = 2 w(f F ) o w(f ) 2 2 c 2 2 o ; 2 2 2 wf ( F) o c 4) GooF = S = where M is the number of reflections and N is the ( M N) number of parameters refined. 5) H. D. Flack, Acta Cryst. 1983, A39, 876-881

Page S19 Table 4. Atomic coordinates and equivalent isotropic displacement parameters (Å 2 ) for C 16 H 26 O 3. U eq is defined as one-third of the trace of the orthogonalized U ij tensor. x y z Ueq O(1) -0.0691(4) 0.9207(3) 0.11205(11) 0.0369(5) O(2) -0.1314(3) 0.9330(3) 0.43482(9) 0.0293(5) O(3) -0.7907(3) 1.1644(3) 0.48080(11) 0.0383(5) C(1) 0.0979(5) 0.6686(4) 0.17339(14) 0.0254(6) C(2) 0.1018(5) 0.8222(4) 0.12285(15) 0.0286(7) C(3) 0.3202(6) 0.8314(4) 0.08096(17) 0.0340(8) C(4) 0.3337(6) 0.6707(5) 0.03336(16) 0.0404(8) C(5) 0.3021(6) 0.5081(5) 0.07697(16) 0.0366(8) C(6) 0.0748(5) 0.5172(4) 0.11833(15) 0.0287(7) C(7) 0.0235(6) 0.3548(4) 0.15685(17) 0.0371(8) C(8) -0.0531(6) 0.3510(5) 0.22398(18) 0.0407(8) C(9) -0.0971(6) 0.5007(4) 0.27071(16) 0.0334(7) C(10) -0.1022(5) 0.6679(4) 0.22514(14) 0.0257(6) C(11) 0.0867(6) 0.4975(5) 0.34189(17) 0.0463(9) C(12) -0.0914(5) 0.8270(4) 0.27532(16) 0.0298(7) C(13) -0.3224(5) 0.8519(4) 0.31364(16) 0.0321(7) C(14) -0.3018(5) 0.9900(4) 0.37328(15) 0.0270(7) C(15) -0.5487(5) 1.0240(4) 0.39858(15) 0.0289(7) C(16) -0.5496(5) 1.1548(5) 0.45986(15) 0.0315(7)

Page S20 Table 5. Bond lengths (Å) for C 16 H 26 O 3. O(1)-C(2) 1.219(4) O(2)-C(14) 1.439(3) O(3)-C(16) 1.428(3) C(1)-C(2) 1.517(4) C(1)-C(10) 1.529(4) C(1)-C(6) 1.547(4) C(2)-C(3) 1.499(4) C(3)-C(4) 1.536(5) C(4)-C(5) 1.523(5) C(5)-C(6) 1.536(4) C(6)-C(7) 1.499(4) C(7)-C(8) 1.330(4) C(8)-C(9) 1.486(5) C(9)-C(11) 1.540(4) C(9)-C(10) 1.551(4) C(10)-C(12) 1.543(4) C(12)-C(13) 1.534(4) C(13)-C(14) 1.525(4) C(14)-C(15) 1.512(4) C(15)-C(16) 1.512(4) Table 6. Bond angles ( ) for C 16 H 26 O 3. C(2)-C(1)-C(10) 115.7(3) C(2)-C(1)-C(6) 103.5(2) C(10)-C(1)-C(6) 112.3(2) O(1)-C(2)-C(3) 122.8(3) O(1)-C(2)-C(1) 122.5(3) C(3)-C(2)-C(1) 114.3(3) C(2)-C(3)-C(4) 109.7(3) C(5)-C(4)-C(3) 112.8(2) C(4)-C(5)-C(6) 111.2(3) C(7)-C(6)-C(5) 113.3(3) C(7)-C(6)-C(1) 111.4(2) C(5)-C(6)-C(1) 109.8(2) C(8)-C(7)-C(6) 122.6(3) C(7)-C(8)-C(9) 126.2(3) C(8)-C(9)-C(11) 108.9(3) C(8)-C(9)-C(10) 111.5(2) C(11)-C(9)-C(10) 115.2(3) C(1)-C(10)-C(12) 112.1(2) C(1)-C(10)-C(9) 111.0(3) C(12)-C(10)-C(9) 112.4(2) C(13)-C(12)-C(10) 113.1(2) C(14)-C(13)-C(12) 114.4(2) O(2)-C(14)-C(15) 110.6(2) O(2)-C(14)-C(13) 108.0(2) C(15)-C(14)-C(13) 110.2(2) C(14)-C(15)-C(16) 115.0(2) O(3)-C(16)-C(15) 108.3(2)

Page S21 Table 7. Anisotropic displacement parameters (Å 2 ) for C 16 H 26 O 3. The anisotropic displacement factor exponent takes the form: -2π 2 [(ha*) 2 U 11 + + 2hka*b*U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 0.0350(11) 0.0337(13) 0.0423(11) 0.0072(11) 0.0058(9) 0.0046(12) O(2) 0.0279(10) 0.0289(12) 0.0306(10) 0.0083(9) 0.0023(8) -0.0011(10) O(3) 0.0295(11) 0.0395(13) 0.0472(12) -0.0189(12) 0.0104(9) -0.0093(12) C(1) 0.0277(14) 0.0248(15) 0.0230(12) -0.0025(14) 0.0003(10) -0.0014(15) C(2) 0.0279(16) 0.0283(19) 0.0294(16) 0.0010(13) 0.0024(13) -0.0026(14) C(3) 0.0382(17) 0.033(2) 0.0324(16) 0.0054(14) 0.0087(14) 0.0000(16) C(4) 0.0446(18) 0.045(2) 0.0341(15) -0.0030(18) 0.0143(13) -0.003(2) C(5) 0.0371(18) 0.038(2) 0.0357(16) -0.0081(15) 0.0079(14) 0.0008(16) C(6) 0.0313(16) 0.0257(18) 0.0291(15) -0.0068(14) 0.0037(12) -0.0021(14) C(7) 0.0468(19) 0.0229(18) 0.0423(18) -0.0039(15) 0.0074(15) -0.0018(16) C(8) 0.054(2) 0.0229(17) 0.0465(19) 0.0031(16) 0.0117(16) -0.0010(17) C(9) 0.0375(18) 0.0303(19) 0.0337(15) 0.0037(15) 0.0094(13) -0.0009(16) C(10) 0.0258(14) 0.0230(15) 0.0283(13) -0.0003(14) 0.0036(11) 0.0013(15) C(11) 0.059(2) 0.044(2) 0.0362(17) 0.0101(16) 0.0056(16) 0.0037(18) C(12) 0.0316(16) 0.0270(18) 0.0318(15) -0.0019(14) 0.0081(12) -0.0015(15) C(13) 0.0304(16) 0.0322(18) 0.0343(15) -0.0049(14) 0.0066(12) 0.0000(15) C(14) 0.0272(15) 0.0303(18) 0.0232(13) 0.0011(12) 0.0012(11) 0.0014(13) C(15) 0.0286(15) 0.0293(18) 0.0287(14) -0.0025(13) 0.0028(12) 0.0009(14) C(16) 0.0264(14) 0.0344(18) 0.0344(14) -0.0095(16) 0.0057(12) -0.0030(16)

Page S22 Table 8. Hydrogen coordinates and isotropic displacement parameters (Å 2 ) for C 16 H 26 O 3. x y z Ueq H(2A) -0.1877 0.8469 0.4542 0.035 H(3A) -0.8735 1.0821 0.4622 0.046 H(1A) 0.2595 0.6606 0.2047 0.030 H(3B) 0.4703 0.8415 0.1166 0.041 H(3C) 0.3082 0.9329 0.0484 0.041 H(4A) 0.2050 0.6760-0.0097 0.048 H(4B) 0.4935 0.6675 0.0137 0.048 H(5A) 0.4483 0.4898 0.1135 0.044 H(5B) 0.2869 0.4104 0.0422 0.044 H(6A) -0.0681 0.5406 0.0803 0.034 H(7A) 0.0466 0.2503 0.1323 0.045 H(8A) -0.0825 0.2423 0.2439 0.049 H(9A) -0.2630 0.4862 0.2868 0.040 H(10A) -0.2619 0.6712 0.1926 0.031 H(11A) 0.0771 0.3877 0.3670 0.056 H(11B) 0.0479 0.5887 0.3755 0.056 H(11C) 0.2521 0.5140 0.3285 0.056 H(12A) 0.0510 0.8176 0.3140 0.036 H(12B) -0.0670 0.9284 0.2446 0.036 H(13A) -0.4594 0.8804 0.2752 0.039 H(13B) -0.3624 0.7431 0.3368 0.039 H(14A) -0.2392 1.0966 0.3522 0.032 H(15A) -0.6133 0.9159 0.4162 0.035 H(15B) -0.6613 1.0622 0.3550 0.035 H(16A) -0.4330 1.1217 0.5034 0.038 H(16B) -0.5000 1.2669 0.4419 0.038 Table 9. Hydrogen bonded atoms (Å 2 ) for C 16 H 26 O 3. donor acceptor D-H bond H-A distance D-A distance D-H-A angle required symmetry operation O(2)-H(2A) O(3) 0.84 1.87 2.671(3) 159.7 -x-1, y-1/2, -z+1 O(3)-H(3A) O(2) 0.84 1.87 2.679(3) 162.4 x-1, y, z

Page S23 Table 10. Torsion angles for C 16 H 26 O 3. C(10)-C(1)-C(2)-O(1) -14.9(4) C(7)-C(8)-C(9)-C(10) 13.4(5) C(6)-C(1)-C(2)-O(1) 108.4(3) C(2)-C(1)-C(10)-C(12) -56.6(3) C(10)-C(1)-C(2)-C(3) 171.7(2) C(6)-C(1)-C(10)-C(12) -175.2(2) C(6)-C(1)-C(2)-C(3) -65.1(3) C(2)-C(1)-C(10)-C(9) 176.8(2) O1)-C(2)-C(3)-C(4) -115.4(3) C(6)-C(1)-C(10)-C(9) 58.3(3) C(1)-C(2)-C(3)-C(4) 58.0(3) C(8)-C(9)-C(10)-C(1) -41.2(3) C(2)-C(3)-C(4)-C(5) -48.0(3) C(11)-C(9)-C(10)-C(1) 83.6(3) C(3)-C(4)-C(5)-C(6) 50.5(3) C(8)-C(9)-C(10)-C(12) -167.6(3) C(4)-C(5)-C(6)-C(7) 175.1(2) C(11)-C(9)-C(10)-C(12) -42.8(3) C(4)-C(5)-C(6)-C(1) -59.6(3) C(1)-C(10)-C(12)-C(13) 166.1(2) C(2)-C(1)-C(6)-C(7) -169.9(2) C(9)-C(10)-C(12)-C(13) -68.1(3) C(10)-C(1)-C(6)-C(7) -44.4(3) C(10)-C(12)-C(13)-C(14) 170.4(2) C(2)-C(1)-C(6)-C(5) 63.7(3) C(12)-C(13)-C(14)-O(2) -68.2(3) C(10)-C(1)-C(6)-C(5) -170.8(2) C(12)-C(13)-C(14)-C(15) 170.9(3) C(5)-C(6)-C(7)-C(8) 140.3(3) O(2)-C(14)-C(15)-C(16) 58.6(3) C(1)-C(6)-C(7)-C(8) 15.9(4) C(13)-C(14)-C(15)-C(16) 178.0(3) C(6)-C(7)-C(8)-C(9) -0.6(5) C(14)-C(15)-C(16)-O(3) -176.3(2) C(7)-C(8)-C(9)-C(11) -114.7(4)

Page S24 Notes on the structure determination for C 16 H 26 O 3. Crystals were examined under a light hydrocarbon oil and mounted with silicone vacuum grease to a thin glass fiber affixed to a tapered copper mounting-pin. This assembly was transferred to the goniometer of a Siemens SMART CCD diffractometer equipped with a locally modified LT- 2A low-temperature apparatus operating at 143 K. Three crystals were examined and abandoned for weak diffraction and other defects before locating the specimen crystal. While also exhibiting weak diffraction, examination of peak profiles suggested proceeding with data collection. Cell parameters were determined using reflections harvested from 3 orthogonal sets of 20 0.3 ω scans. Final cell parameters were refined using 1 607 reflections with I>10σ(I) chosen from 7 622 in the entire data set. An arbitrary hemisphere of data was collected to 0.68 Å using 0.3 ω scans measured for 30 seconds in 2 correlated 30-second exposures. Data were truncated to 0.78 Å during refinement due to poor data agreement at higher resolution; 100 % of the unique data was measured. All data were corrected for Lorentz and polarization effects. No absorption correction was performed. Structure solution via direct methods in non-centrosymmetric space group P2 1 revealed the non-hydrogen structure. All non-hydrogen atoms were refined with parameters for anisotropic thermal motion. Hydrogen atoms were placed at calculated geometries and allowed to ride on the position of the parent atom. Hydrogen thermal parameters were set to 1.2 times the equivalent isotropic thermal parameter of the parent atom. Absolute structure was determined from a known stereocenter. Calculation of absolute structure by the method of Flack was indeterminate on this light atom structure. No significant features were present in the final difference electron density map.

Page S25