Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System

Similar documents
Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

Hopf Bifurcation of a Nonlinear System Derived from Lorenz System Using Centre Manifold Approach ABSTRACT. 1. Introduction

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps

Research Article A Hamilton-Poisson Model of the Chen-Lee System

Controlling a Novel Chaotic Attractor using Linear Feedback

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Generating a Complex Form of Chaotic Pan System and its Behavior

ANALYSIS AND CONTROLLING OF HOPF BIFURCATION FOR CHAOTIC VAN DER POL-DUFFING SYSTEM. China

Research Article Chaotic Attractor Generation via a Simple Linear Time-Varying System

Research Article Numerical Integration and Synchronization for the 3-Dimensional Metriplectic Volterra System

Recent new examples of hidden attractors

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Chaos synchronization of complex Rössler system

Multistability in the Lorenz System: A Broken Butterfly

Time-delay feedback control in a delayed dynamical chaos system and its applications

Hopf Bifurcation and Limit Cycle Analysis of the Rikitake System

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Constructing a chaotic system with any number of equilibria

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

A new four-dimensional chaotic system

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

A Novel Hyperchaotic System and Its Control

Chaos Control of the Chaotic Symmetric Gyroscope System

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL

KingSaudBinAbdulazizUniversityforHealthScience,Riyadh11481,SaudiArabia. Correspondence should be addressed to Raghib Abu-Saris;

Hopf bifurcations analysis of a three-dimensional nonlinear system

CHAPTER 6 HOPF-BIFURCATION IN A TWO DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATION

Chaos Control for the Lorenz System

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

A New Finance Chaotic Attractor

Crisis in Amplitude Control Hides in Multistability

MULTISTABILITY IN A BUTTERFLY FLOW

Research Article Stabilizing of Subspaces Based on DPGA and Chaos Genetic Algorithm for Optimizing State Feedback Controller

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

Simplest Chaotic Flows with Involutional Symmetries

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

Research Article Chaos Control on a Duopoly Game with Homogeneous Strategy

Controlling the Period-Doubling Bifurcation of Logistic Model

Backstepping synchronization of uncertain chaotic systems by a single driving variable

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Research Article A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

A Unified Lorenz-Like System and Its Tracking Control

GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Research Article Chaos and Control of Game Model Based on Heterogeneous Expectations in Electric Power Triopoly

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

Hopf bifurcation analysis of Chen circuit with direct time delay feedback

Research Article Hamilton-Poisson Realizations for the Lü System

A New Chaotic Behavior from Lorenz and Rossler Systems and Its Electronic Circuit Implementation

Bifurcation control and chaos in a linear impulsive system

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks

Research Article Hidden Periodicity and Chaos in the Sequence of Prime Numbers

OUTPUT REGULATION OF THE SIMPLIFIED LORENZ CHAOTIC SYSTEM

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type

Research Article Periodic and Chaotic Motions of a Two-Bar Linkage with OPCL Controller

Research Article Stability Switches and Hopf Bifurcations in a Second-Order Complex Delay Equation

Construction of four dimensional chaotic finance model and its applications

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM

Bifurcation and chaos in simple jerk dynamical systems

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

Research Article The Stability of Gauss Model Having One-Prey and Two-Predators

Method of Generation of Chaos Map in the Centre Manifold

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors

Adaptive feedback synchronization of a unified chaotic system

B5.6 Nonlinear Systems

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS

Research Article Propagation of Computer Virus under Human Intervention: A Dynamical Model

Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems

A New Hyperchaotic Attractor with Complex Patterns

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Controlling Hopf Bifurcations: Discrete-Time Systems

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS

Generalized function projective synchronization of chaotic systems for secure communication

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM

Bifurcation Analysis, Chaos and Control in the Burgers Mapping

Inverse optimal control of hyperchaotic finance system

Projective synchronization of a complex network with different fractional order chaos nodes

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Research Article Complexity Analysis of a Cournot-Bertrand Duopoly Game Model with Limited Information

Synchronization of Chaotic Systems via Active Disturbance Rejection Control

Research Article Exact Solutions of φ 4 Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Example of a Blue Sky Catastrophe

Transcription:

Abstract and Applied Analysis Volume, Article ID 3487, 6 pages doi:.55//3487 Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Ranchao Wu and Xiang Li School of Mathematics, Anhui University, Hefei 339, China Correspondence should be addressed to Ranchao Wu, rcwu@ahu.edu.cn Received 5 March ; Accepted June Academic Editor: Allan Peterson Copyright q R. Wu and X. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new Rössler-like system is constructed by the linear feedback control scheme in this paper. As well, it exhibits complex dynamical behaviors, such as bifurcation, chaos, and strange attractor. By virtue of the normal form theory, its Hopf bifurcation and stability are investigated in detail. Consequently, the stable periodic orbits are bifurcated. Furthermore, the anticontrol of Hopf circles is achieved between the new Rössler-like system and the original Rössler one via a modified projective synchronization scheme. As a result, a stable Hopf circle is created in the controlled Rössler system. The corresponding numerical simulations are presented, which agree with the theoretical analysis.. Introduction In the last three decades, chaos has been studied extensively and attracted increasing interests from mathematicians, physicists, engineers, and so on. Since chaotic systems not only admit abundant complex and interesting dynamical behaviors, such as bifurcations, chaos, and strange attractors, but also have many potential practical applications, great efforts have been devoted to investigating chaotic systems, for example, Lorenz system and Rössler system, 3, and there has been an increasing effort to construct different types of chaotic systems. During the last few years, some new Lorenz-like chaotic systems 4, including Chen system 5,Lüsystem 6, Liu system 7, andtsystem 8, were proposed and studied. Research on bifurcation, such as Hopf bifurcation, homoclinic bifurcation, and period doubling bifurcation, is one of the most hot topics in the field of nonlinear science 9. It has been found that bifurcation will frequently lead to chaos in nonlinear systems. So it is necessary to explore the bifurcation of dynamical systems so as to understand the complex dynamical behaviors. Recently, Hopf bifurcation of some famous chaotic systems has been investigated and it has been becoming one of the most active topics in the field of chaotic systems.

Abstract and Applied Analysis In this paper, a new Rössler-like system is constructed by adding a linear feedback control term to the original Rössler system. It is found that the new system admits complex dynamical behaviors with varying parameters, such as bifurcation, chaos, and strange attractors. Now its basic dynamical behaviors are analyzed, especially its Hopf bifurcation is investigated in detail via theoretical as well as numerical analysis. The bifurcated periodic solutions will be created under some parameter conditions. As is well known, Hopf bifurcation gives rise to limit circles, which are typical oscillatory behaviors of many nonlinear systems in physical, social, economic, biological, and chemical fields. These oscillatory behaviors can be beneficial in practical applications, such as in mixing, monitoring, and fault diagnosis in electromechanical systems. Also, the properties of limit cycles are very useful in modern control engineering, such as autotuning of PID controller 3 and process identification 4. Early efforts in Hopf bifurcation control focused on delaying the onset of this bifurcation 5 or stabilizing an existing bifurcation 6. In this paper, we propose a control method based on modified projective synchronization MPS 7 to generate a Hopf limit circle in the original Rössler system. The proposed MPS involves less calculations. Furthermore, the shape and size of the created Hopf circle can be adjusted by choosing different scaling factors. The paper is organized as follows. In Section, a new Rössler-like system is constructed by the linear feedback control. In Section 3, its dissipation and fractal dimension are analyzed. The local stability and existence of Hopf bifurcation, as well as the direction and stability of bifurcating periodic solutions, are discussed in detail by the normal form theory in Section 4. In Section 5, the anticontrol of Hopf circles is achieved between the new Rössler-like system and the original Rössler system via the modified projective synchronization scheme, and a stable Hopf limit circle is created in the original Rössler system successfully. Finally, some conclusions are drawn in Section 6.. The New Modified Rössler System The Rössler system is described by ẋ y z, ẏ x, ż a y y ) bz,. which is chaotic when a b, and its strange attractor is shown in Figure. Based on this Rössler system, by adding a linear term to the second equation and changing the third equation of system., a new Rössler-like system is obtained and given by ẋ y z, ẏ x cz,. ż ay bz y, where x, y, z are state variables, and a, b, c are parameters. In order to ensure that system. is a dissipative system, assume that the parameter b is positive in the following discussions.

Abstract and Applied Analysis 3 z.5 3 y x Figure : Chaotic attractor of system.. When a,b,c., system. is chaotic, which is shown in Figure. The bifurcation diagram of state variable y versus parameter c is shown in Figure 3. Figure 4 is the state trajectory of y. 3. Analysis of Basic Dynamic Behaviors 3.. Dissipation and Existence of Attractor The divergence of system. is defined by V ẋ ẏ ż b <. x y z 3. Since V <, system. is a dissipative system and converges with an index rate of e t. Volume element V shrinks to V e t at the time t. When t, volume element V shrinks to. Therefore, all trajectories of system. will be confined to a congregation, whose volume is. Its gradual movement behaviors are fixed in an attractor. 3.. The Lyapunov Dimension As we know, the Lyapunov exponents measure the exponential rates of divergence or convergence of nearby trajectories in phase space. Using Matlab software, the three Lyapunov exponents of system. are, respectively, λ.7,λ,λ 3.796 when a,b,c.. The Lyapunov dimension of chaotic attractor of this new Rössler-like system is fractional, which is described as j D L j λ λ j i.7.649..796 3. i

4 Abstract and Applied Analysis z.5 y x 3 Figure : Chaotic attractor of system...4..8 y.6.4...5 c Figure 3: Bifurcation diagram of system...5 y 5 5 t Figure 4: State trajectory of y.

Abstract and Applied Analysis 5 3.3. Local Stability By simple computation, it is easy to obtain that system. has two equilibria O,, and E cy,y, y, where y a b. The Jacobian matrix for system. at the equilibrium O,, and the equilibrium E cy,y, y are, respectively, given by J c a b, J c a b b, 3.3 and their corresponding characteristic equation are, respectively, f λ λ 3 bλ ac λ a b, f λ λ 3 bλ bc ac λ a b. 3.4 3.5 According to Routh-Hurwitz s criterion, the real parts of the roots of 3.4 are all negative if and only if b>, a abc <, a b>, 3.6 and the real parts of the roots of 3.5 are all negative if and only if b>, bc a b >, a b<. 3.7 The above analysis is summarized as follows. Theorem 3.. For the two equilibria O and E of the new Rössler-like system., when b>,a abc <,a b>, the equilibrium O is asymptotically stable. when b>, bc a b >,a b<, the equilibrium E is asymptotically stable. 4. Hopf Bifurcation Analysis of the New System 4.. Hopf Bifurcation Analysis about O,, Let us assume that the solutions to the new Rössler-like system. undergo a Hopf bifurcation on some submanifold in parameter space corresponding to fixed c c. Then the characteristic equation 3.4 has roots λ R and λ ± ±iω, where ω R. Then, one can obtain that ) f λ λ λ λ ω λ 3 bλ ac λ a b. 4.

6 Abstract and Applied Analysis Clearly, λ b, ω ac, λ ω a b. 4. From 4., itiseasytogetthat 3.4 has a pair of purely imaginary conjugate roots λ ± ±i a/b ±iω and a real root λ b if and only if c c b, a >. 4.3 b According to 3.4, one has λ c aλ 3λ bλ ac. 4.4 Therefore, Re λ ab 3 ω c. a b 4.5 b 4 ω By Hopf bifurcation theorem 8 and the above analysis, we have the following Theorem 4. Existence of Hopf bifurcation. When a /,b >,a b>and c passes through the critical value c /b, system. undergoes a Hopf bifurcation at the equilibrium point O,,. 4.. Direction and Stability of Bifurcating Periodic Orbits In this section, we apply the normal form theory 8 to study the direction, stability, and period of bifurcating periodic solutions for system.. The eigenvectors υ, υ associated with λ iω,λ b are, respectively, a b ab i a b υ b a b ab i, υ. 4.6 ab

Abstract and Applied Analysis 7 Define a b ab a b P Re υ, Im υ,υ b a b ab, ab x, y, z ) T x,y,z ) T. 4.7 Then system. can be written into ẋ ω y F x,y,z ), ẏ ω x F x,y,z ), 4.8 ż bz F 3 x,y,z ), where ) F x,y,z k b x b ab x y a b ) b y, F x,y,z ) b b ab F x,y,z ), 4.9 ) b 3 b F 3 x,y,z a F ) x,y,z, in which k a b 3 b a. 4.

8 Abstract and Applied Analysis In the following, we will follow the procedures proposed by Hassard et al. 8 to figure out the necessary quantities. One can get g 4 [ F g 4 [ F x F y k a b b 3) b F x y k b 3 a b ) F x y i F i x F y i k ab b b 4), b ab F F x y )] F x y i k b 4 3b 3ab ) 4b 4, b ab g [ )] F F F F i F F 4 x y x y x y x y k 3b 3 a b ) i k b 4 b ab ) 4b 4, b ab G [ 3 F 3 F 3 F 8 x 3 x y x y 3 F 3 F i 3 F 3 F y 3 x 3 x y x y G [ )] F F F i F, x z y z x z y z G [ )] F F F i F. x z y z x z y z )] 3 F y 3 )], 4. Then we have g G G w G w, 4. where w,w can be obtained by solving the following equations: λ 3 w h, λ 3 iω w h, 4.3 in which h ) F 3 F 3, h 4 x y F 3 4 x F 3 y ) F 3 i, 4.4 x y here, it is not necessary to calculate w,w,h,h for obtaining the value of g.

Abstract and Applied Analysis 9 From the above analysis, one can compute the following quantities: C i [ g g g ] g ω 3 g b6 35b 4 35ab 3 39b 78ab 39a 48ω a b ab [ 6b 9 37 b a b 6 77b 6a 48 b 4 i 96ω a b a b b 3 b a 7a b 36b a ) b 5a ) ] b 4a 3, 96ω a b a b b 3 b a β ReC b6 35b 4 35ab 3 39b 78ab 39a 4ω a, b ab μ Re C α a b b 3 a b ) b 6 35b 4 35b 3 39b 78ab 39a ), 4a 3 b 4 ω 4 τ Im C μ ω ) ω a b b 3 b a ) b 6 35b 4 35ab 3 39b 78ab 39a ) 96ω a b a b 4.5 [ 6b 9 37 b a b 6 77b 6a 48 b 4 96ω a b a b b 3 b a 7a b 36b a ) b 5a ) ] b 4a 3. 96ω a b a b b 3 b a Now we can get the following theorem. Theorem 4.. System. exhibits a Hopf bifurcation at the equilibrium O,, as c passes through c, with the following properties: a if μ > <, the Hopf bifurcation is supercritical subcritical) and the bifurcating periodic solutions exist for c>c <c ; b if β < >, the bifurcating periodic solutions are orbitally stable unstable); c if τ > <, the period of bifurcating periodic solutions increases decreases).

Abstract and Applied Analysis. z..4.6 y x Figure 5: Phase diagram for system. with c.. Remark 4.3. Here we only study the Hopf bifurcation about the equilibrium O,,. For the Hopf bifurcation of system. at the equilibrium E cy,y, y, We first introduce the transformation x x cy,y y y,andz z y. Then, system. becomes ẋ y z, ẏ x cz, 4.6 ż a b y bz y ; hence, the discussion about the Hopf bifurcation of system. at the equilibrium E cy,y, y is equivalent to the case of system 4.6 at,,. So the Hopf bifurcation of the equilibrium point E cy,y, y can be treated similarly. 4.3. Numerical Simulations When a,b, we can calculate c according to Theorem 4.. It follows from the results in Section 4. that μ.5,β 3.5833,τ.5. In the light of Theorem 4., since μ >, the Hopf bifurcation is supercritical, which means that the equilibrium O,, of system. is stable when c<c as shown in Figure 5. A Hopf bifurcation occurs when c increases past c, that is, a family of periodic solutions bifurcate from the equilibrium, as shown in Figure 6. Since β <, each individual periodic solution is stable. Since τ <, periods of bifurcating periodic solutions increase with increasing c.

Abstract and Applied Analysis. z.4.6.8 y x Figure 6: Phase diagram for system. with c. 5. Anticontrol of Hopf Limit Circles Based on MPS Next, we will design a stable Hopf limit circle into the Rössler system. via modified projective synchronization MPS proposed by 7. To this end, the closed-loop control system based on MPS is formulated as follows: ẋ Ax f x u, ẏ By g y ), 5. 5. where 5. denotes the response system and 5. stands for the drive system with a stable Hopf limit circle. x x,x,...,x n T and y y,y,...,y n T are state variables of the response system and the drive system, respectively. A, B are matrices, whereas f, g are nonlinear functions. The vector u u,u,...,u n T represents the controller to be designed, with which the two systems can achieve synchronization by MPS. The symbols e i x i α i y i, i,,...,n 5.3 stand for the errors between the state variables of the response system and those of the drive one. α diag α,α,...,α n denotes the scaling factor matrix of the MPS, which can change the shape and size of the created Hopf limit circle. In order to achieve the modified projective synchronization, the controller u for the active control 9 is chosen as u Aαy f x α By g y )) PKe, 5.4 where P R n m,k R m n,andk is the feedback gain. Then we obtain the error system ė A PK e, 5.5

Abstract and Applied Analysis when the choice of K makes the real parts of all eigenvalues of A PK negative by Routh- Hurwitz criterion, the errors e i i,,...,n exponentially converge to zero as time t and the MPS between the response system 5. and the drive system 5. occurs. Remark 5.. For a feasible control, the feedback gain K can also be selected by the pole placement technique such that the real parts of all eigenvalues of A PK are negative, when the controllability matrix is of full rank. In addition, P can also be adjusted feasibly. Remark 5.. Notice that the values of the scaling factor components α i /,i,,...,nhave no effect on the controllability of the error system 5.5, because the eigenvalues of A PK are independent on the scaling factor matrix α. This implies that we can arbitrarily adjust the scaling factor α i /,i,,...,nto change the shape of the created Hopf limit circle without worrying about the robustness during control. Now take the Rössler system. as the response system in which we want to create a stable Hopf limit circle. First, rewrite system. as follows: ẋ x x 3, ẋ x, ) ẋ 3 a x x bx 3. 5.6 Note that the system is chaotic with parameters a, b, and the chaotic attractor is shown in Figure. Next, choose the new Rössler-like system. with parameters a, b, c,, as the drive system, and rewrite it as follows: ẏ y y 3, ẏ y y 3, 5.7 ẏ 3 y y 3 y. According to dynamical analysis in Section 4, its stable Hopf limit circle surrounding the equilibrium O,, will appear, as shown in Figure 6. By the MPS scheme proposed above, the signal of the stable Hopf circle is employed to drive the Rössler system 5.6 to generate a stable Hopf circle surrounding the equilibrium O,,. In the controller u as stated in 5.4, we have A, f x, x By g y ) y y 3 y y 3, P. y y 3 y 5.8

Abstract and Applied Analysis 3 Let K k,k,k 3, then A PK, 5.9 k k k 3 and the corresponding characteristic equation is f λ λ 3 k 3 ) λ k λ k 3 k. 5. According to Routh-Hurwitz criterion, the real parts of the roots of 5. are all negative if and only if k 3 ) >, k 3 k >, k k k 3 >. 5. As long as the feedback gain K k,k,k 3 satisfying condition 5. is chosen, the MPS between the response system 5.6 and the drive system 5.7 will be achieved according to the analysis above, that is, we can successfully generate a stable Hopf limit circle surrounding O,, in Rössler system 5.6 and the scaling factor α i /,i,, 3, can be arbitrarily adjusted to change the shape of the created Hopf circle. Case. Choose α diag,, 3 and K,,. It is easy to verify that the feedback gain K k,k,k 3 satisfies condition 5.. The time evolution of the errors is shown in Figure 7. A stable Hopf limit circle surrounding O,, is created as shown in Figure 8. Case. Choose α diag,, and K,, 3. It is easy to verify that the feedback gain K k,k,k 3 satisfies condition 5.. The time evolution of the errors is shown in Figure 9. Another stable Hopf limit circle surrounding O,, is created as shown in Figure. The above numerical simulation results are presented to illustrate the effectiveness of the MPS-based anticontrol of Hopf circles. Furthermore, the feedback gain K k,k,k 3 can change the speed of convergence of the error system, and the scaling factor α i /,i,, 3, can be adjusted to change the shape and size of the created Hopf limit circle. 6. Conclusions In this paper, a new Rössler-like system has been proposed and its dynamical behaviors are analyzed. By choosing an appropriate bifurcation parameter, a Hopf bifurcation occurs at the equilibrium point in this system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are analyzed in detail. Further, a stable Hopf limit circle is generated surrounding the equilibrium point in the response system the original Rössler system via a modified projective synchronization. Numerical simulations illustrated the effectiveness of the anticontrol of Hopf limit circles. There are still some unknown dynamical behaviors such as heteroclinic

4 Abstract and Applied Analysis.8.6.4 Errors...4.6 5 5 Time e t) e t) e 3 t) Figure 7: Synchronization errors in Case. x3.5 4 x x.5 Figure 8: The created Hopf circle in Case. homoclinic orbits about this system, as well as chaotic control to it, which deserve to be further investigated. Acknowledgments This work is supported by the National Natural Science Foundation of China No. 674 3, the Specialized Research Fund for the Doctoral Program of Higher Education of China No. 934, the Natural Science Foundation of Anhui Province No. 466M and the Natural Science Foundation of Anhui Education Bureau No. KJA35, andthe Project of Anhui University No. KJJQ.

Abstract and Applied Analysis 5.8.6.4. Errors..4.6.8 5 5 Time e t) e t) e 3 t) Figure 9: Synchronization errors in Case. x3.4...4.6 x x.5 Figure : The created Hopf circle in Case. References E. N. Lorenz, Deterministic non-periodic flows, Journal of Atomic and Molecular Sciences, vol., pp. 3 4, 963. O. E. R. Rössler, Continuous chaosfour prototype equations, Annals of the New York Academy of Sciences, vol. 36, pp. 376 39, 979. 3 X. Liao and P. Yu, Study of globally exponential synchronization for the family of Rössler systems, International Journal of Bifurcation and Chaos, vol. 6, no. 8, pp. 395 46, 6. 4 Y. Liu and Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonlinear Analysis, vol., no. 4, pp. 563 57,. 5 G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 465 466, 999. 6 J. Lü, G. Chen, and S. Zhang, Dynamical analysis of a new chaotic attractor, International Journal of Bifurcation and Chaos, vol., no. 5, pp. 5,.

6 Abstract and Applied Analysis 7 X. Zhou, Y. Wu, Y. Li, and Z. X. Wei, Hopf bifurcation analysis of the Liu system, Chaos, Solitons and Fractals, vol. 36, no. 5, pp. 385 39, 8. 8 R. A. Van Gorder and S. R. Choudhury, Analytical Hopf bifurcation and stability analysis of T system, Communications in Theoretical Physics, vol. 55, no. 4, pp. 69 66,. 9 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol., Springer, New York, NY, USA, 998. F. Dercole and S. Maggi, Detection and continuation of a border collision bifurcation in a forest fire model, Applied Mathematics and Computation, vol. 68, no., pp. 63 635, 5. Y. Ma, M. Agarwal, and S. Banerjee, Border collision bifurcations in a soft impact system, Physics Letters A, vol. 354, no. 4, pp. 8 87, 6. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, NY, USA, 983. 3 C. C. Yu, Autotuning of PID Controllers: A Relay Feedback Approach, Springer, Berlin, Germany, 999. 4 Q. G. Wang, T. H. Lee, and C. Lin, Relay Feedback: Analysis, Identification and Control, Springer, London, UK, 3. 5 E. H. Abed and J.-H. Fu, Local feedback stabilization and bifurcation control. I. Hopf bifurcation, Systems & Control Letters, vol. 7, no., pp. 7, 986. 6 P. K. Yuen and H. H. Bau, Rendering a subcritical Hopf bifurcation supercritical, Journal of Fluid Mechanics, vol. 37, pp. 9 9, 996. 7 G.-H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons and Fractals, vol. 3, no. 5, pp. 786 79, 7. 8 B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, Mass, USA, 98. 9 G. Wen, Designing Hopf limit circle to dynamical systems via modified projective synchronization, Nonlinear Dynamics, vol. 63, no. 3, pp. 387 393,. P. N. Paraskevopoulos, Morden Control Engingneering, Marcel Dekker, New York, NY, USA,.

Advances in Operations Research Volume 4 Advances in Decision Sciences Volume 4 Journal of Applied Mathematics Algebra Volume 4 Journal of Probability and Statistics Volume 4 The Scientific World Journal Volume 4 International Journal of Differential Equations Volume 4 Volume 4 Submit your manuscripts at International Journal of Advances in Combinatorics Mathematical Physics Volume 4 Journal of Complex Analysis Volume 4 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Volume 4 Volume 4 Volume 4 Volume 4 Discrete Mathematics Journal of Volume 4 Discrete Dynamics in Nature and Society Journal of Function Spaces Abstract and Applied Analysis Volume 4 Volume 4 Volume 4 International Journal of Journal of Stochastic Analysis Optimization Volume 4 Volume 4