HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY

Similar documents
Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

STABILITY AND HOPF BIFURCATION OF A MODIFIED DELAY PREDATOR-PREY MODEL WITH STAGE STRUCTURE

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

BIFURCATION ANALYSIS ON A DELAYED SIS EPIDEMIC MODEL WITH STAGE STRUCTURE

Dynamical analysis of a delayed predator-prey system with modified Leslie-Gower and Beddington-DeAngelis functional response

Stability and Hopf Bifurcation Analysis of the Delay Logistic Equation

Stability and nonlinear dynamics in a Solow model with pollution

Bifurcation Analysis of a Population Dynamics in a Critical State 1

Dynamics on a General Stage Structured n Parallel Food Chains

Hopf bifurcation analysis of Chen circuit with direct time delay feedback

Hopf bifurcation analysis for a model of plant virus propagation with two delays

STABILITY ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS WITH TWO DISCRETE DELAYS

Research Article Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus

The Cai Model with Time Delay: Existence of Periodic Solutions and Asymptotic Analysis

Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile cloud computing networks

STABILITY AND HOPF BIFURCATION ON A TWO-NEURON SYSTEM WITH TIME DELAY IN THE FREQUENCY DOMAIN *

Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

STABILITY AND HOPF BIFURCATION IN A SYMMETRIC LOTKA-VOLTERRA PREDATOR-PREY SYSTEM WITH DELAYS

ANALYSIS AND CONTROLLING OF HOPF BIFURCATION FOR CHAOTIC VAN DER POL-DUFFING SYSTEM. China

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks

Hopf-Fold Bifurcation Analysis in a Delayed Predator-prey Models

On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay

Research Article Center Manifold Reduction and Perturbation Method in a Delayed Model with a Mound-Shaped Cobb-Douglas Production Function

THE ANALYSIS OF AN ECONOMIC GROWTH MODEL WITH TAX EVASION AND DELAY

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System

Chaos control and Hopf bifurcation analysis of the Genesio system with distributed delays feedback

STABILITY OF A POSITIVE POINT OF EQUILIBRIUM OF ONE NONLINEAR SYSTEM WITH AFTEREFFECT AND STOCHASTIC PERTURBATIONS

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1

Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area

Andronov Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types IV and II

Reaction-Diffusion Models and Bifurcation Theory Lecture 11: Bifurcation in delay differential equations

Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel

Global Stability Analysis on a Predator-Prey Model with Omnivores

1 Introduction. ISSN , England, UK World Journal of Modelling and Simulation Vol. 11 (2015) No. 3, pp

Continuous Threshold Policy Harvesting in Predator-Prey Models

THE most studied topics in theoretical ecology is the

DYNAMICS OF A PREY-PREDATOR SYSTEM WITH INFECTION IN PREY

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Research Article Stability Switches and Hopf Bifurcations in a Second-Order Complex Delay Equation

A Comparison of Two Predator-Prey Models with Holling s Type I Functional Response

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Bifurcation Analysis of Prey-Predator Model with Harvested Predator

Hopf Bifurcation and Limit Cycle Analysis of the Rikitake System

Global dynamics of a predator-prey system with Holling type II functional response

Delayed Dynamics in Heterogeneous Competition with Product Differentiation

Phase Synchronization

The Invariant Curve in a Planar System of Difference Equations

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Stability, convergence and Hopf bifurcation analyses of the classical car-following model

Research Article Dynamics of a Delayed Model for the Transmission of Malicious Objects in Computer Network

Dynamics of a Delayed Competitive System Affected by Toxic Substances with Imprecise Biological Parameters

Delayed Dynamics in Heterogeneous Competition with Product Differentiation

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos.

Stability and Hopf bifurcation of a ratio-dependent predator prey model with time delay and stage structure

HIGHER ORDER CRITERION FOR THE NONEXISTENCE OF FORMAL FIRST INTEGRAL FOR NONLINEAR SYSTEMS. 1. Introduction

Stability and bifurcation in a two species predator-prey model with quintic interactions

Research Paper 252 July Market Stability Switches in a Continuous-Time Financial Market with Heterogeneous Beliefs

A Unified Lorenz-Like System and Its Tracking Control

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Analysis of a delayed predator-prey model with ratio-dependent functional response and quadratic harvesting. Peng Feng

Synchronization and Bifurcation Analysis in Coupled Networks of Discrete-Time Systems

Bifurcations in Delayed Lotka-Volterra Intraguild Predation Model

Research Article The Mathematical Study of Pest Management Strategy

Models Involving Interactions between Predator and Prey Populations

A comparison of delayed SIR and SEIR epidemic models

DYNAMICS OF A RATIO-DEPENDENT PREY-PREDATOR SYSTEM WITH SELECTIVE HARVESTING OF PREDATOR SPECIES. 1. Introduction

Nonlinear Stability and Bifurcation of Multi-D.O.F. Chatter System in Grinding Process

UNIVERSIDADE DE SÃO PAULO

ESAIM: M2AN Modélisation Mathématique et Analyse Numérique M2AN, Vol. 37, N o 2, 2003, pp DOI: /m2an:

Stationary distribution and pathwise estimation of n-species mutualism system with stochastic perturbation

Synchronization of a General Delayed Complex Dynamical Network via Adaptive Feedback

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Global attractivity and positive almost periodic solution of a multispecies discrete mutualism system with time delays

Analysis of a predator prey model with modified Leslie Gower and Holling-type II schemes with time delay

Hopf-pitchfork bifurcation of coupled van der Pol oscillator with delay

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Stability Analysis And Maximum Profit Of Logistic Population Model With Time Delay And Constant Effort Of Harvesting

Stability of Limit Cycle in a Delayed IS-LM Business Cycle model

HOPF BIFURCATION FOR TUMOR-IMMUNE COMPETITION SYSTEMS WITH DELAY

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

DOUBLE HOPF BIFURCATION IN DELAYED VAN DER POL DUFFING EQUATION

Stability and bifurcation of a simple neural network with multiple time delays.

Research Article Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

B5.6 Nonlinear Systems

Absolute Stability and Conditional Stability in General Delayed Differential Equations

Feedback-mediated oscillatory coexistence in the chemostat

Lecture 3 : Bifurcation Analysis

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

7 Two-dimensional bifurcations

5.2.2 Planar Andronov-Hopf bifurcation

HOPF BIFURCATION CALCULATIONS IN DELAYED SYSTEMS

A Producer-Consumer Model With Stoichiometry

UNIVERSITY of LIMERICK

Analysis of a lumped model of neocortex to study epileptiform ac

Transcription:

Vol. 37 17 No. J. of Math. PRC HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY LI Zhen-wei, LI Bi-wen, LIU Wei, WANG Gan School of Mathematics and Statistics, Hubei Normal University, Huangshi 435, China Abstract: In this paper, we mainly study the Hopf bifurcation and the stability of modified predator-prey biological economic system with nonselective harvesting and time delay. By using the stability and bifurcation theory of differential-algebraic system, the conditions for stability of the positive equilibrium point are obtained, let time delay as bifurcation parameter, the existence of Hopf bifurcation and direction of Hopf bifurcation are obtained. We have improved the Leslie-Gower predator-prey system, make the system which we established more practical, so the conclusions are made more scientific. Keywords: stability; Hopf bifurcation; time delay; non-selective; predator-prey system; periodic solution 1 MR Subject Classification: 34D; 34K18; 34C3 Document code: A Article ID: 55-779717-57-14 1 Introduction In recent years, the increasingly serious problem of environmental degradation and resource shortage, made the analysis and modeling of biological systems more interested. The predator-prey system played a crucial role among the relationships between the biological population, and it naturally attracted much attention both for mathematicians and biologists, especially on predator-prey systems with or without time delay. As we know, delay differential equation models exhibit much more complicated dynamics than differential equation models without delay, see [1 1]. A lot of researchers studied the dynamics of predator-prey models with harvesting and obtained many dynamic behaviors, such as stability of equilibrium, Hopf bifurcation, periodic solution, Bogdanov-Takens bifurcation, Neimark-Sacker bifurcation, and so on, see [1 15]. In [16], Lucas studied the dynamic properties of the following Leslie-Gower predatorprey system { ẋ = xa y, ẏ = yd k y x, 1.1 Received date: 14-11-16 Accepted date: 15--6 Foundation item: Supported by the Funding Program of Higher School Outstanding Youth Scientific and Technological Innovation Team in Hubei of China T141. Biography: Li Zhenwei 1991, male, born at Qianjiang, Hubei, major in ordinary differential equations and control theory.

58 Journal of Mathematics Vol. 37 x and y denote prey and predator population densities at time t, respectively, a, d, and k are positive constants that represent the prey intrinsic growth rate, predator mortality rate, and the maximum value of the per capita reduction rate of x due to y, respectively. At present, economic profit is a very important factor for merchants, governments and even every citizen, so it is necessary to research biological economic systems, which are often described by differential-algebraic equations or differential difference-algebraic equations. In 1954, Gordon [13] studied the effect of the harvest effort on ecosystem from an economic perspective and proposed the following economic theory: Net Economic Revenue NER = Total Revenue TR - Total Cost TC. This provides theoretical evidence for the establishment of differential-algebraic equation. Based on the economic theory as mentioned above and system 1.1, Liu and Fu [1] considered the following Leslie-Gower predator-prey system ẋ = xa y E, ẏ = yd k y x, = Epx c v. 1. They investigated the Hopf bifurcation of the above system without considering the effect of time delay and the harvesting of predator. As is known to all, delay differential equation models exhibit much more complicated dynamics than ordinary differential equation models, see [1 1], as was pointed by Kuang [17] that any model of species dynamics without delays is an approximation at best. When we considered the model with non-selective harvesting, namely at the same time there are also the harvesting of predator and harvesting of the prey in the model, it will be more in line with the actual situation of the predator-prey systems. Motivated by the above discussion, in this paper, by choosing the time delay as a bifurcation parameter and consider the predator-prey systems with non-selective harvesting, we investigate a modified Leslie-Gower predator-prey systems with non-selective harvesting and time delay described by the following system dx = xtr dt 1 byt τ Et, dy = ytr dt k yt Et, xt = Etp 1 xt + p yt c 1 c m, 1.3 p 1 > and p > are harvesting reward per unit harvesting effort for unit prey and predator, respectively; c 1 and c are harvesting cost per unit harvesting effort for prey and predator, respectively; m is the economic profit per unit harvesting effort. In this paper, we mainly discuss the effects of economic profit on the dynamics of system 1.3 in the region R 3 + = {x, y, E x >, y >, E > }.

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 59 For convenience, we let fxt, Et = f 1 Xt, Et f Xt, Et gxt, Et = Etp 1 xt + p yt c 1 c m, = xtr 1 byt τ Et ytr k yt xt Et, X t = x, y T. The rest of the paper is arranged as follows: in Section, the local stability of the positive equilibrium points are investigated by the corresponding characteristic equation of system 1.3. In Section 3, by using the normal form and Hopf bifurcation theorem, we study the Hopf bifurcation of the nonnegative equilibrium depending on the parameter we show that the positive equilibrium loses its stability and system 1.3 exhibits Hopf bifurcation in the second section. In Section 4, the theoretical result is supplied by a numerical example. Finally, this paper ends with a brief discussion. Local Stability Analysis of System In this section, we discuss the local stability of a positive equilibrium for system 1.3. Now, we try to find all possible positive equilibrium points of system 1.3. A point Y = x, y, E is an equilibrium point of system 1.3 if and only if Y satisfy the following equations xtr 1 byt τ Et =, ytr k yt Et =,.1 xt Etp 1 xt + p yt c 1 c m =. From.1, we can easy get E satisfy E 3 + γ 1 E + γ E + γ 3 =,. γ 1 = bc 1 + bc kp 1 p r 1 p r p, γ = kp 1r 1 + r 1 p r + bm bc 1 c bc r p, γ 3 = bmr p <. Based on the root and coefficient relationship of equation and γ 3 <, we can find at least one positive root E, so system 1.3 has at least one positive equilibrium point Y = x, y, E = kr1 E, r1 E br E, E b, r 1 > E, r > E. Now, we derive the formula for determining the properties of the positive equilibrium point of system 1.3. As in [13], first we consider the local parametric ψ of the third equation of system 1.3, which is defined as follows [x, y, Ē]T = ψzt = N T + U + V hzt, gψzt =,

6 Journal of Mathematics Vol. 37 U = 1 1, V = 1, Zt = y 1, y T, N = x, y, Ē, hzt = hh 1 y 1 t, y t, h y 1 t, y t, h 3 y 1 t, y t : R R is a smoothing mapping, that is xt = x + y 1 t, yt = y + y t, Ēt = Ē + h 3 y 1 t, y t. Then we can obtain the parametric system of system 1.3 as follows { dy1t dt dy t dt = y 1 t + x r 1 by t + y Ē + h 3 y 1 t, y t, = y t + y r k yt+y y Ē 1t+x + h 3 y 1 t, y t..3 Noticing that gψzt =, so we can get the linearized system of parametric system.3 at, as follows { dy1t = bx dt y t τ, dy t.4 = ky y dt 1 t ky x y t. x From.4, we can obtain the characteristic equation of the linearized system of parametric system. at, as follows λ + ky x λ + b ky x e λτ =..5 By eq..5, when τ =, it is obvious that ky x > and kby x >, then, two roots of eq..5 has always negative teal parts, i.e., the positive equilibrium point of system 1.3 is locally asymptotically stable. Now, based on the above discussion, we study the local stability around the positive equilibrium point for system 1.3 and the existence of Hopf bifurcation occurring at the positive equilibrium point when τ >. If iω is a root of eq..5, and substituting iω ω is a positive real number into eq..5, and separating the real and imaginary parts, two transcendental equations can be obtained as follows ω = kby cosωτ, x.6 ky ω = kby sinωτ. x x.7 Since sinωτ + cosωτ = 1 and adding.6 and.7, we obtain ω 4 + ky x ω kby x =..8

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 61 From.8, ky x > and kby x <, we can easy find that eq..5 has a unique positive root ω, that is ω = ky x + Substituting ω into.6 and solving for τ, we get ky x + 4 kby x..9 τ n = 1 arccos x ω + nπ, n =, 1,,..1 ω kby ω Thus when τ = τ n, the characteristic equation.5 has a pair of purely imaginary roots iω. Lemma.1 Denote by λ n τ = η n τ + iω n τ the root of.5 such that η n τ n =, ω n τ n = ω, n =, 1,,. Then the following transversality condition η nτ n is satisfied. Proof Differentiating eq..5 with respect to τ, we obtain Noting that dλ dτ 1 = [λx + ky kby τe λτ ] kby τe λτ = 1 λ τ λ 1 λ + ky x λ. sign{re dλ dt } λ=iω = sign{re dλ dt 1 } λ=iω = sign{ ω + ky x ω ω + ky x } >. The proof is completed. From the above analysis and [17, 18], we have the following results. Theorem.1 i For system 1.3, its positive equilibrium point Y is locally asymptotically stable for τ [, τ and unstable for τ > τ. ii System 1.3 undergoes Hopf bifurcation at the positive equilibrium point Y for τ = τ n, n =, 1,,. 3 Direction and the Stability of Hopf Bifurcation In this section, we investigate the direction of bifurcation and the stability of bifurcation periodic orbits from the positive equilibrium point Y of system 1.3 at τ = τ by using the normal form approach theory and center manifold theory introduced by Hassard [15]. Now, we re-scare the time by t = t τ, ȳ 1 = y 1, ȳ = y, τ = τ + µ, Z = ȳ 1, ȳ for simplicity, we continue to use Z said Z, then the parametric system.3 of system 1.3 is equivalent to the following functional differential equation FDE system in C = C[ 1, ], R, ŻT = L µ ZT + fµ, Z t, 3.1

6 Journal of Mathematics Vol. 37 ZT = y 1 t, y t T, and L µ : C R, f : R C R are given, respectively, by [ ] [ L µ φ = τ + µ φ T + τ + µ a 1 a a 1 ] φ T 1, and fµ, φ = τ + µ a 1 = bx, a 1 = ky f 11 f, x, a = ky x, f 11 = bφ 1 φ 1, f = ky φ x 1 + ky φ 3 1 φ k φ x x +, and φ = φ 1, φ C. By the Riesz representation theorem, there exists a matrix whose components are bounded variation functions θ [ 1, ] such that L µ φ = 1 dηθ, µφθ, φ C. In fact, choosing δθ = [ ] [ ηθ, µ = τ + µ δθ + τ + µ a 1 a {, θ, 1, θ =. For φ C 1 [ 1, ], R, define a 1 ] δθ + 1, Aµφθ = dφθ dθ 1, 1 θ <, dηθ, µφθ, θ =. 3. Then system 3.1 can be rewritten as Ż = AµZ t + RµZ t. 3.3 For ψ C 1 [, 1], R, the adjoint operator A of A as A ψs = dψs ds, < s 1, 1 dη T s, ψ s, s =, 3.4 η T is the transpose of the matrix η.

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 63 For φ C 1 [ 1, ], R and for ψ C 1 [, 1], R, in order to normalize the eigenvectors of operator A and adjoint operator A, we define a bilinear inner product θ ψs, φθ = ψφ ψξ θdηθφξdξ, 3.5 θ= 1 ξ= ηθ = ηθ,. It is easy to verify that A and A are a pair of adjoint operators. By the discussion in Section, we know that ±iωτ are eigenvalues of A. Thus they are also eigenvalues of A. Next we calculate the eigenvector qθ of A associated to the eigenvalue iωτ and the eigenvector q s of A associated to the eigenvalue iωτ. Then it is not difficult to show that iω β =, β = bx e iωτ qθ = 1, β T, q s = Gβ, 1e iωτs, Moreover, q s, qθ = 1 and q s, qθ =. iω ky x bx e iωτ, Ḡ = β + β bx τ β β e iωτ 1. In the reminder of this section, we use the same notations as those in [15]. We first compute the coordinates to describe the center manifold C at µ =. Define On the center manifold C, we have żt = q, Z t, W t, θ = Z t Reztqθ. 3.6 W t, θ = W zt, zt, θ = W θ z + W 11θz z + W θ z +. 3.7 In fact, z and z are local coordinates for center manifold C in the direction of q and q. Note that W is real if z t is real. We consider only real solutions. For the solution z t C, since µ = and 3.3, we have ż = iωτ z + q θ, f, W z, z, θ + Re[ztqθ], = iωτ z + q f, W z, z, + Re[ztqθ], 3.8 rewrite it as ż = iωτ z + gz, ż, 3.9 gz, ż = g θ z + g 11θz z + g θ z +. 3.1 From 3.3 and 3.8, we have { Ẇ = Żt żq zq = AW Re{ q fz, zqθ}, 1 θ <, AW Re{ q fz, zqθ} + f, θ =. 3.11

64 Journal of Mathematics Vol. 37 Rewrite 3.11 as Ẇ = AW + Hz, Z, θ, 3.1 Hz, z, θ = H θ z + H 11θz z + H θ z +. 3.13 Substituting the corresponding series into 3.1 and comparing the coefficient, we obtain A iωτ W θ = H θ, AW 11 θ = H 11 θ. 3.14 Notice that qθ = 1, β T e iωτθ, q = Gβ, 1, and 3.6 we obtain y 1t = z + z + W 1 z + W 1 11z z + W 1 z +, y t = βz + β z + W z + W 11z z + W z +, y 1t 1 = βze iωτ + β ze iωτ + W 1 1 z + W 1 11 1z z + W 1 1 z +, y t 1 = βze iωτ + β ze iωτ + W 1 z + W 11 1z z + W 1 z +. According to 3.8 and 3.9, we know that By 3.7, it follows that gz, z = q f z, z = Ḡτ β, 1 f 11 = by 1t y t 1, f11 f f = ky y x 3 1t + ky y 1t y t k y t +. x x gz, z = Ḡτ { b β [z + z + W 1 z + W 1 11z z + W 1 z ], 3.15 [βze iωτ + β ze iωτ + W 1 z + W 11 1z z + W 1 z ] ky [z + z + W x 1 z 3 + W 11z z 1 + W 1 z ] + ky [z + z + W x 1 z + W 11z z 1 + W 1 z ] [βz + β z + W z + W 11z z + W z ] k x [βz + β z + W z + W 11z z + W z ] + }.

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 65 That is, gz, z = Ḡτ {z [ bβ β e iωτ ky x 3 + ky x β k x β ] +z z[ b β βe iωτ + βe iωτ ky x 3 + z [ b β βe iωτ ky x 3 + ky x β k x β ] + ky x β + β k β x β] +z z[ bβ β e iωτ ky + ky βw x 11 1 + ky k W x y 11 + bβ β e iωτ b β W 11 1 + x 3 ky + x 3 b β ky x β W 1] + }. Comparing the coefficients with 3.1, it follows that ky W 1 x + k βw x g = Ḡτ [ bβ β e iωτ ky x 3 + ky x β k x β ], g 11 = Ḡτ [ b β βe iωτ + βe iωτ ky x 3 k β β ], x g = [ b β βe iωτ ky x 3 g 1 = [ bβ β e iωτ ky x 3 + ky x + ky x β + β k β x β], + ky βw11 1 + bβ β e iωτ x ky x 3 + β W 1 + ky k ky W x x y 11 + k βw x b β W b β 11 1 + W 1]. Now we compute W θ and W 11 θ. From 3.11 and 3.15, we have that for θ [ 1,, Hz, z, θ = Re{ q fz, zqθ} = gz, zqθ ḡz, z qθ. 3.16 Comparing the coefficients with 3.13, we can obtain that H θ = g qθ ḡ qθ, H 11 θ = g 11 qθ ḡ 11 qθ. 3.17 ky x Substituting the above equalities into 3.14, it follows that { Ẇ θ = iωw θ + g qθ + ḡ qθ, Ẇ 11 θ = g 11 qθ + ḡ 11 qθ. 3.18 Solving 3.18, we have { W θ = ig τ ω qeiωτθ + iḡ 3ωτ qe iωτθ + Ee iωτ, W 11 θ = ig11 τ ω qeiωτθ + iḡ11 ωτ qe iωτθ + F. 3.19

66 Journal of Mathematics Vol. 37 In what follows, we seek appropriate E and F in 3.19. From 3.11 and 3.15, we have H = g q ḡ q + τ H 11 = g 11 q ḡ 11 q + τ d 1 d d 1 d, 3., 3.1 d 1 = bβ e iωτ, d = ky x 3 + ky x β k x β, d 3 = breβ e iωτ, d 4 = ky x 3 + ky Reβ k β x x β. Substituting 3.19 3.1 into 3.14 and noting that iωτ I iωτ I 1 e iωτθ dηθq =, 1 e iωτθ dηθq =. We obtain iω bx e iωτ E = ky iω + ky x x bx F = ky x ky x d 1 d d 3 d 4, 3.. 3.3 It is easy to obtain E and F from 3. and 3.3, that is E 1 = ky iω + x d 1 bx e iωτ ky iω x + bky x e iωτ 4ω, E = F 1 = ky d x 3 + iωd 4 ky iω x + bky x e iωτ 4ω, Therefore we can compute the following quantities C 1 = ky x d 3 bx d 4, F = d 3. bky bx x i τ ω g g 11 g 11 1 3 g + g 1, µ = ReC 1 Reλ τ, t = ImC 1 + µ Imλ τ τ ω, β = ReC 1,

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 67 which determine the direction of Hopf bifurcation and stability of bifurcated periodic solutions of system 1.3 at the critical value τ. Theorem 3.1 i The direction of Hopf bifurcation is determined by the sign of µ : the Hopf bifurcation is supercritical if µ > and the Hopf bifurcation is subcritical if µ <. ii The stability of bifurcated periodic solution is determined by β: the periodic solution are stable if β > and unstable if β <. iii The period of bifurcation periodic solution is determined by t : the period increase if t >, decrease if t <. x prey. 1.8 1.6 1.4 1. 1.8 4 6 8 1 1 14 16 18 time t.55 y predator 4.5 4 3.5 3.5 4 6 8 1 1 14 16 18 time t.5 E harvest effort.45.4.35.3.5. 4 6 8 1 1 14 16 18 time t E harvest effort.6.4. 4.5 4 3.5 y predator 3.5.5 1.5 1 x prey Figure 1: When τ =.6 < τ and with initial conditions x =.53, y = 3.148, E =.56, that show the positive equilibrium point Y is locally asymptotically stable..5 4 Numerical Simulations As an example we consider the differential-algebraic predator-prey system 1.3 with the parameters r 1 = 1.6, r = 1.3, b = k = m =.5, p 1 = 7, p = 6, c 1 = 5, c = 3, that is, = xt1.6.5yt τ Et, yt = yt1.3.5 Et, xt = Et7xt + 6yt 5 3.5. dx dt dy dt 4.1 And by the discussions in Section and Section 3, we determine the stability of the positive equilibrium point and Hopf bifurcation. Here, for convenience, we only discuss one of the positive equilibrium point Y of system 4.1, and others positive equilibrium points of system 4.1 can be similar studied. we can easily get Y =.53, 3.148,.56, and by computing, we get ω =.994, τ =.6473. So by Theorem.1, the equilibrium point Y is asymptotically stable when τ [, τ = [,.6473 and unstable when τ >.6473.

68 Journal of Mathematics Vol. 37 x prey. 1.8 1.6 1.4 1. 1.8 4 6 8 1 1 14 16 18 time t.6.55 y predator 4.5 4 3.5 3.5 4 6 8 1 1 14 16 18 time t E harvest effort.5.45.4.35.3.5. 4 6 8 1 1 14 16 18 time t.6.4. 4.5 4 3.5 y predator 3.5.5 1 x prey Figure : When τ =.68 > τ, with the same initial conditions above that shows the bifurcating periodic solutions from the positive equilibrium point Y. E harvest effort 1.5.5 When τ =, we can easily show that the positive equilibrium point is asymptotically stable. Y =.53, 3.148,.56 By the theory of Hassard [15], as it is discussed in former section, we also determine the direction of Hopf bifurcation and the other properties of bifurcating periodic solution. By computing, we can obtain the following values C 1 =.533.448i, λ τ = 1.635 + 1.1431i, it follows that µ =.343 <, β = 1.67 >, t = 1.643 >, from which and Theorem 3.1 we conclude that the Hopf bifurcation of system4.1 occurring at τ =.6473 is subcritical and the bifurcating periodic solution exists when τ cross τ to the left and the bifurcating periodic solution is unstable. By Theorem 3.1, the positive equilibrium point Y of system 4.1 is locally asymptotically stable when τ =.6 < τ as is illustrated by computer simulation in Fig.1. And periodic solutions occur from Y when τ =.68 > τ as is illustrated by computer simulation in Fig.. 5 Discussion Nowadays, economic profit is a very important factor for governments, merchants, and even citizen, and the harvested biological resources in the predator-prey systems are usually sold as commodities in the market in order to achieve the economic interest. So modelling and qualitative analysis for bio-economic system are necessary.

No. Hopf bifurcation analysis of a predator-prey system with non-selective harvesting and time delay 69 Compared with most other researches on dynamics of predator-prey population, see [1, 5, 1, 18], the main contribution of this paper lies in the following aspect. The predator-prey system we consider incorporate delay and non-selective harvesting, which could make our model more realistic and the analysis result in this paper is more scientific. So our paper provide a new ideal and a efficacious method for the qualitative analysis of the Hopf bifurcation of the differential-algebraic biological economic system. In addition, stage structure, diffusion effects, disease effects may be incorporated into our bio-economic system, which would make the bio-economic system exhibit much more complicated dynamics. References [1] Li K, Wei J. Stability and Hopf bifurcation analysis of a prey-predator system with two delays[j]. Chaos Solitions Fract., 9, 4: 66 613. [] Ma Y F. Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays[j]. Nonlinear Anal. Real World Appl., 1, 13: 37 375. [3] Sadhukhan D, Mondal B, Maiti M. Discrete age-structured population model with age dependent harvesting and its stability analysis[j]. Appl. Math. Comput., 8, 1: 631 639. [4] Huo H F, Li W T. Existence and global stability of periodic solutions of a discrete predator-prey system with delays[j]. Appl. Math. Comput., 4, 153: 337 351. [5] Zhang G D Shen Y Chen B S. Bifurcation analysis in a discrete differential-algebraic predator-prey system[j]. Appl. Math. Model., 14, 38: 4835 4848. [6] Li X, Ruan S, Wei J. Stability and bifurcation in delay-differential equations with two delays[j]. J. Math. Anal. Appl., 1999, 36: 54 8. [7] Pan K, Li B W. Existence of positive periodic solution for two-patches predator-prey impulsive diffusion delay systems with functional response[j]. J. Math.,. 1, 31: 183 19. [8] Zhao H, Wang L, Ma C. Hopf bifurcation in a delayed Lotka-Volterra predator-prey system[j]. Nonl. Anal. RWA., 8, 91: 114 17. [9] Wei J, Ruan S. Stability and bifurcation in a neural model with two delays[j]. Phys. D., 1999, 13: 55 7. [1] Celik C. The stability and Hopf bifurcation for a predator-prey system with time delay[j]. Chaos Solitons Fract., 8, 37: 87 99. [11] Pan S X. Asymptotic spreading in a Lotka-Volterra predator-prey system[j]. J. Math. Anal. Appl., 13, 47: 3 36. [1] Liu W, Fu C J, Chen B S. Hopf bifurcation and center stability for a predator-prey biological economic model with prey harvesting[j]. Commun. Nonlinear. Sci., doi:1.116/j.cnsns. 1..5. [13] Gordon H S. Economic theory of a common property resource: the fishery[j]. J. Polit., 1954, 6: 14 14. [14] Li P L, Yu C C, Zeng X W. The qualitative analysis of a class of predator-prey system with functional responses[j]. J. Math., 6, 6: 17. [15] Hassard N D, Kazarinoff Y H, Wan Y H. Theory and application of Hopf bifurcation[m]. Cambridge: Lodon Mathematical Society Lecture Notes, vol. 41, Cambridge Univ. Press, 1981. [16] Lucas W F. Modules in applied mathematics: differential equation models[m]. New York: Springer, 1983.

7 Journal of Mathematics Vol. 37 [17] Kuang Y. Delay differential equations with applications in population dynamics[m]. Boston: Academic Press, 1993. [18] Zhang G D, Shen Y, Yin Q, Sun J W. Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays[j]. Neural Networks, 15, 61: 49 58. [19] Zhang X, Zhang Q L. Bifurcation analysis and control of a class of hybrid biological economic models[j]. Nonlinear Anal HS., 9, 3: 578 87. [] Chen B S, Liao X X, Liu Y Q. Normal forms and bifurcations for the differential-algebraic systems in Chinese[J]. Acta Math. Appl. Sinica.,, 33: 49 443. [1] Lv X, Lu S P, Yan P. Existence and global attractivity of positive periodic solutions of Lotka- Volterra predator-prey systems with deviating arguments[j]. Nonl. Anal. Real World Appl., 1, 11: 574 583. Hopf,,,, 435 : - Hopf.,, τ Hopf. Leslie-Gower -,,. : ; Hopf ; ; ; ; MR1 : 34D ; 34K18 ; 34C3 : O9; O193