Hybrid Systems Modeling, Analysis and Control

Similar documents
The Cayley-Hamilton Theorem For Finite Automata. Radu Grosu SUNY at Stony Brook

Nondeterministic Automata vs Deterministic Automata

State Complexity of Union and Intersection of Binary Suffix-Free Languages

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Prefix-Free Regular-Expression Matching

Nondeterministic Finite Automata

Lecture 08: Feb. 08, 2019

Regular languages refresher

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Regular expressions, Finite Automata, transition graphs are all the same!!

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

Minimal DFA. minimal DFA for L starting from any other

Formal Languages and Automata

Deterministic Finite Automata

1 Nondeterministic Finite Automata

NON-DETERMINISTIC FSA

Myhill-Nerode Theorem

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

CONTROLLABILITY and observability are the central

Java II Finite Automata I

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Finite Automata as Time-Inv Linear Systems Observability, Reachability and More

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

First Midterm Examination

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

CS 573 Automata Theory and Formal Languages

CHAPTER 1 Regular Languages. Contents

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

Model Reduction of Finite State Machines by Contraction

Coalgebra, Lecture 15: Equations for Deterministic Automata

Nondeterminism and Nodeterministic Automata

Descriptional Complexity of Non-Unary Self-Verifying Symmetric Difference Automata

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

FABER Formal Languages, Automata and Models of Computation

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

= state, a = reading and q j

Nondeterministic Biautomata and Their Descriptional Complexity

Chapter 2 Finite Automata

Theory of Computation Regular Languages

CS375: Logic and Theory of Computing

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

Non-deterministic Finite Automata

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Lecture 09: Myhill-Nerode Theorem

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

More on automata. Michael George. March 24 April 7, 2014

Abstraction of Nondeterministic Automata Rong Su

CMSC 330: Organization of Programming Languages

Lecture 6 Regular Grammars

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

CISC 4090 Theory of Computation

State Minimization for DFAs

Designing finite automata II

Worked out examples Finite Automata

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Hyers-Ulam stability of Pielou logistic difference equation

CS375: Logic and Theory of Computing

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Running an NFA & the subset algorithm (NFA->DFA) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Formal Language and Automata Theory (CS21004)

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Non-Deterministic Finite Automata

CSCI565 - Compiler Design

TOPIC: LINEAR ALGEBRA MATRICES

Behavior Composition in the Presence of Failure

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Non-deterministic Finite Automata

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Revision Sheet. (a) Give a regular expression for each of the following languages:

More general families of infinite graphs

Formal languages, automata, and theory of computation

Lecture Notes No. 10

A tutorial on sequential functions

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

DFA Minimization and Applications

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Lexical Analysis Finite Automate

First Midterm Examination

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

Finite-State Automata: Recap

In-depth introduction to main models, concepts of theory of computation:

Test Generation from Timed Input Output Automata

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Fundamentals of Computer Science

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

Logic Synthesis and Verification

Transcription:

Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5

Finite Automt s Liner Systems Oservility, Rehility nd More

Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt s Exmple) x 2 x 4 x 2 L = (* + *)

Miniml NFA: How re they Relted? (Arnold, Diky nd Nivt s Exmple) x 2 x 4 x 5 x 2 x 4 x 5 L = + + + + + No homomorphism of either utomton onto the other.

Miniml NFA: How re they Relted? (Arnold, Diky nd Nivt s Exmple) x 2 x 4 x 8 x 5 x 6 x 7 x 8 Crrez s solution: Tke oth in terminl NFA. Is this the est one n do? No! One n use use liner (similrity) trnsformtions.

Convergene of Theories Hyrid Systems Computtion nd Control: - onvergene etween ontrol nd utomt theory. Hyrid Automt: n outome of this onvergene - modeling formlism for systems exhiiting oth disrete nd ontinuous ehvior, - suessfully used to model nd nlyze emedded nd iologil systems.

Lk of Common Foundtion for HA v V E x& = Ax+ Bu v = Cx v V R Mode dynmis: - Liner system (LS) voltge(mv) v V U Stimulted s / di = t v V / R s v t < V U = Mode swithing: - Finite utomton (FA) Different tehniques: - LS redution - FA minimiztion time(ms) LS & FA tught seprtely: No ommon foundtion!

Min Conjeture of this Tlk Finite utomt n e onveniently regrded s time invrint liner systems over semimodules: - liner systems tehniques generlize to utomt Exmples of suh tehniques inlude: - liner trnsformtions of utomt, - minimiztion nd determiniztion of utomt s oservility nd rehility redutions - Z-trnsform of utomt to ompute ssoited regulr expression through Gussin elimintion.

Finite Automt s Liner Systems Consider finite utomton M = (X, Σδ,, S,F) with: - finite set of sttes X, finite input lphet - trnsition reltion δ X Σ X, - strting nd finl sets of sttes S, F X Σ,

Finite Automt s Liner Systems Consider finite utomton M = (X, Σδ,,S,F) with: - finite set of sttes X, finite input lphet Σ, - trnsition reltion δ X Σ X, - strting nd finl sets of sttes S,F X For eh input letter Σ: - represent δ() X X s oolen mtrix A(), - write A = A() whe re (x) = Σ { if x = } otherwise

Finite Automt s Liner Systems Now define the liner system L M = [S,A,C]: x(n+) = x(n)a, x y(n) = S(ε)ε = x(n)c, C = F(ε)ε x nd y re row vetors

Finite Automt s Liner Systems Now define the liner system L M = [S,A,C]: x(n+) = x(n)a, x = S(ε)ε y(n) = x(n)c, C = F(ε)ε Exmple: onsider following utomton: L x x 2 A() = A() =, x (ε)' =, C(ε) =

Polynomils nd their Opertions A, C, x(n) nd y(n) re polynomils with: - powers: strings in Σ * (the input strings) - oeffiient s: mtries nd vetors over B

Polynomils nd their Opertions A, C, x(n) nd y(n) re polynomils - powers: strings in Σ (the input strings) - oeffiients: mtries nd vetors over B Addition nd multiplition: 2 (A() + A()) = * with: done over polynomils A()A() + A()A() + A()A() + A()A( ) = ˆ A() + A() + A() + A()

Boolen Semimodules B is douly idempotent, ommuttive semiring: - (B,+,) is ommuttive idempotent monoid (or), - (B,,) is ommuttive idempotent monoid (nd), - multiplition distriutes over ddition, - is n nnihiltor: =

Boolen Semimodules B is douly idempotent, ommuttive semiring: - (B,+,) is ommuttive idempotent monoid (or), - (B,,) is ommuttive idempotent monoid (nd), - multiplition distriutes over ddition, - is n nnihiltor: = n B is semimodule over slrs in B: - r(x+y) = rx + ry, (r+s)x = rx + sx, (rs)x = - x = x, x = r(sx),

Boolen Semimodules B is douly idempotent, ommuttive semiring: - (B,+,) is ommuttive idempotent monoid (or), - (B,,) is ommuttive idempotent monoid (nd), - multiplition distriutes over ddition, - is n nnihiltor: = n B is semimodule over slrs in B: - r(x+y) = rx + ry, (r+s)x = rx + sx, (rs)x = r(sx), - x = x, x = Note: No dditive nd multiplitive inver ses!

Divergene of Clssi/Disrete Mth Cnonil prtil order in semirings: + iff!. + = iff!. =

Divergene of Clssi/Disrete Mth Cnonil prtil order in semirings: + iff!. + = iff!. = Exmple of nonil PO for Nturl numers: + 5 iff!4. + 4 = 5

Divergene of Clssi/Disrete Mth Cnonil prtil order in semirings: + iff!. + = iff!. = Exmple: Cnonil PO for Nturl numers: + 5 iff!4. + 4 = 5 Exmple: Cnonil PO for Integer numers: 5 + - iff!(-6). 5 + (-6) = Semiring: Either inverses or prtil order!

Oservility Let L = [S,A,C] e n n-stte utomton. It's output: [y() y()... y(n-)] = x [C AC... A n- C] = x O () L is oservle if x is uniquely determined y ().

Oservility Let L = [S,A,C] e n n-stte utomton. It's output: [ O t n- t [y() y()... y(n-)] = x C AC... A C] = x () L is oservle if x is uniquely determined y ( ). Exmple: the oservility mtrix O of L is: O = n AC 3 ε x x2 L x x 2

Liner Dependene Initil vetor x selets sum of rows from O. Hene: - if L is deterministi nd therefore hs single initil stte, x is uniquely determined if ll rows O in O re distint i

Liner Dependene Initil vetor x selets sum of rows from O. Hene: - if L is deterministi nd therefore hs single initil stte, x is uniquely determined if ll rows O in O re distint i - if L is nondeterministi nd hs severl initil sttes, x is not uniquely determined if t here re oolen nd: I,J [..n]. I J = O = i i I i J i O i i i, (2) i

Liner Dependene Initil vetor x selets sum of rows from O. Hene: - if L is deterministi nd therefore hs single initil stte, x is uniquely determined if ll rows O in O re distint i - if L is nondeterministi nd hs severl initil sttes, x is not uniquely determined if there re oolen nd: Line I,J [..n]. I J = O = O r dependene: i i I i J - Def (2) generlizes liner dependene in vetor spes i i i i, (2) (2) for finite I,J nd ny vetor set. i

Liner Dependene Initil vetor x selets sum of rows from O. Hene: - if L is deterministi nd therefore hs single initil stte, x is uniquely determined if ll rows O in O re distint i - if L is nondeterministi nd hs severl initil sttes, x is not uniquely determined if there re oolen nd: Line I,J [..n]. I J = O = O r dependene: i i I i J - Def (2) generlizes liner dependene in vetor - Liner independene is onsequently: I,J [..n]. I J = spn(o ) i I i i i, (2) (2) for finite I,J nd ny vetor set. spes spn(o J) = {} i

Bsis in Boolen Semimodule An ordered set of vetors Y is sis for X if: () Y is independent, () spn(y) = X

Bsis in Boolen Semimodule An ordered set of vetors Y is sis for X if: () Y is independent, () spn(y) = X n Theorem (Bsis) If X B hs sis Y then Y is unique.

Bsis in Boolen Semimodule An ordered set of vetors Y is sis for X if: () Y is independent, () spn(y) = X Theorem (Bsis) If X n B hs sis Y then Y is unique. O = n AC x ε 2 3 L x x 2 [x x2 x3 ]: row sis

Bsis in Boolen Semimodule An ordered set of vetors Y is sis for X if: () Y is independent, () spn(y) = X n Theorem (Bsis) If X B hs sis Y then Y is uniqu e. O = n AC ε x x2 3 L x x 2 [x x x ]: [C( ε) AC() AC()]: 2 3 row sis, olumn sis.

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε)

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5 Define liner trnsf x = x T: T

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5 Define liner trnsf x = x T: T x (n + ) = x (n + )T = x (n)at = x (n)t - AT = x (n)a x (ε) = x (ε)t C(ε) = T - C(ε)

Oservility Redution y Rows L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5 Define liner trnsf x = x T: T A () A() x (ε) C(ε) A(x) = [A(x)T] T x (ε) = x (ε)t C(ε) = [C(ε)] T

Oservility Redution y Columns L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5 Define liner trnsf x = x T: T A () A() x (ε) C(ε) A(x) = [A(x)T] T x (ε) = x (ε)t C(ε) = [C(ε)] T

Mixed Oservility Redution L 2 x 2 x 4 x 5 A() A() x ( ε) C( ε) O ε x x2 x3 x 4 5 Define liner trnsf x = x T: T A () A() x (ε) C(ε) A(x) = [A(x)T] T x (ε) = x (ε)t C(ε) = [C(ε)] T

Originl nd Redued Automt L 2 x 2 L 2, x, 3 x 2 x 4 x 5 NFA L 22 y olumns DFA L 2 y rows x, x 2 NFA L 23 mixed x,, 3 x 2

Originl nd Redued Automt L 2 x 2 L 2 x 4 x 5 NFA L 22 y olumns,, x 2 DFA L 2 y rows x, x 2 NFA L 23 mixed x,, 3 x 2 Let x = x T in L 2 where t Then L 22 = [A 2, x 2,, C 2 ] ' 't ' L 23 = [A 2, x 2,, C 2 ] T = T ' =

Row Bsis ut No Column Bsis 7 L 3 x x 2 x 5 x 6 O ε x x2 x3 x4 x5 x6 x 7 x 4

Row Bsis ut No Column Bsis L 3 x x 5 x 2 x 6 O ε x 2 x 4 x 5 x 6 x 7 x 7 x 4

Row Bsis ut No Column Bsis L 3 x x 2 x 5 x 6 x 7 x 4 O ε x 2 x 4 x 5 x 6 x 7 O ε x x2 x3 x4 x5 x6 7

Row Bsis ut No Column Bsis L 3 x x 2 x 5 x 6 x 7 x 4 O ε x 2 x 4 x 5 x 6 x 7 O ε x x2 x3 x4 x5 x6 7

Oservilty Redution Theorem (Cover): Finding (possily mixed) sis T for O L is equivlent to finding miniml over for O L. - either s its set sis over or s its Krnugh over. Theorem (Complexity): Determining over T for O L is NP-omplete (set sis prolem omplexity). Theorem (Rnk): The row (= olumn) rnk of O L is the size of the set over T (size of Krnugh over).

Rehility: Dul of Oservility Let L = [S,A,C] e n n-stte utomton. It's output: [y() y()... y(n-)] t = C t [x A t x... (A t ) n- x ] = C t R t (3) where x is now olumn vetor. L is rehle if C is uniquely determined y (3).

Rehility: Dul of Oservility Let L = [S,A,C] e n n-stte utomton. It's output: ) R t t t t n- t t [y() y()... y(n-)] = C [x A x... (A x ] = C (3) L is rehle if C is uniquely determined y ( 3. ) Exmple: the rehility mtrix of L is: t R = 2 3 t (A ) x x x n x ε L x x 2 Row sis [x x x [ ε ] = ( ) A () A t t 2 3 x x x ()] ol sis.

Oservilty, Rehility nd More DFA Minimiztion: Is prtiulr se of oservility redution (single initil stte requires distintness only) NFA Determiniztion: Is prtiulr se of rehility trnsformtion (tke ll distint olumns s sis ) Miniml utomt: Are relted y liner mps (ut not y grph isomorphisms!). Better definition of minimlity Other tehniques: Are esily formlized in this setting: Pumping lemm, NFA to RE, Z-trnsforms, et.

Arnold, Diky & Nivt s Exmple Revisited (Oservility Redution) A x 2 x 4 x 5 A x 23 x 24 4 x 5 Define liner trnsf t t x = x T: A(x) = [A(x)T] T t t T = x ( ε) = x ( ε)t C( ε) = [ C( ε)] T

Arnold, Diky & Nivt s Exmple Revisited (Rehility Redution) A x 2 x 4 x 5 A x 23 x 24 4 x 5 Define liner trnsf x = x T: T = A(x) = [A(x)T] T x (ε) = x (ε)t C(ε) = [C(ε)] T