Servomechanism Design

Similar documents
On Control Problem Described by Infinite System of First-Order Differential Equations

LAPLACE TRANSFORM AND TRANSFER FUNCTION

Intermediate Differential Equations Review and Basic Ideas

Risk tolerance and optimal portfolio choice

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO

Q1) [20 points] answer for the following questions (ON THIS SHEET):

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

Linear Quadratic Regulator (LQR) - State Feedback Design

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

EE363 homework 1 solutions

System of Linear Differential Equations

Chapter 1 Fundamental Concepts

Non-sinusoidal Signal Generators

non-linear oscillators

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

Differential Equations

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

KINEMATICS OF RIGID BODIES

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

10. State Space Methods

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

e 2t u(t) e 2t u(t) =?

Reinforcement learning

Lecture 20: Riccati Equations and Least Squares Feedback Control

Signal and System (Chapter 3. Continuous-Time Systems)

Chapter 3 Boundary Value Problem

Control Volume Derivation

Differential Geometry: Numerical Integration and Surface Flow

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Lecture 22 Electromagnetic Waves

ECE 2100 Circuit Analysis

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ENGI 9420 Engineering Analysis Assignment 2 Solutions

EECS20n, Solution to Midterm 2, 11/17/00

The Global Trade and Environment Model: GTEM

EECE 301 Signals & Systems Prof. Mark Fowler

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Low-complexity Algorithms for MIMO Multiplexing Systems

Homework 4 SOLUTION EE235, Summer 2012

Stochastic Model Predictive Control for Gust Alleviation during Aircraft Carrier Landing

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

Module MA1132 (Frolov), Advanced Calculus Tutorial Sheet 1. To be solved during the tutorial session Thursday/Friday, 21/22 January 2016

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Sliding Mode Extremum Seeking Control for Linear Quadratic Dynamic Game

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

Sliding Mode Controller for Unstable Systems

Solutions to Assignment 1

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

Anti-Disturbance Control for Multiple Disturbances

6.003 Homework #9 Solutions

STATE-SPACE MODELLING. A mass balance across the tank gives:

7 Wave Equation in Higher Dimensions

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

6.003 Homework #8 Solutions

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Chapter 6. Systems of First Order Linear Differential Equations

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

The sudden release of a large amount of energy E into a background fluid of density

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Problemas das Aulas Práticas

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

EECE 301 Signals & Systems Prof. Mark Fowler

5. Response of Linear Time-Invariant Systems to Random Inputs

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

ME 391 Mechanical Engineering Analysis

Chapter 7 Response of First-order RL and RC Circuits

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS

Tracking Adversarial Targets

4.5 Constant Acceleration

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03

An Introduction to Malliavin calculus and its applications

Some Basic Information about M-S-D Systems

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997)

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Solutionbank Edexcel AS and A Level Modular Mathematics

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

ECE 2100 Circuit Analysis

3, so θ = arccos

Math Final Exam Solutions

Analytic Model and Bilateral Approximation for Clocked Comparator

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

CHE302 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES. Professor Dae Ryook Yang

Structural Dynamics and Earthquake Engineering

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

Math 4600: Homework 11 Solutions

Transcription:

Sevomechanism Design Sevomechanism (sevo-sysem) is a conol sysem in which he efeence () (age, Se poin) changes as ime passes. Design mehods PID Conol u () Ke P () + K I ed () + KDe () Sae Feedback u() Kx() + S K x ( ) () Gain K is obained based on Pole Assignmen Opimal egulao design Sevo Seve / Slave Refeence sysem () Ax (), x () x y () Cx()

Refeence Sysem x () A x () x () x () c () Linea sysem which geneaes he efeence signal y () 3 Ex. Sep signal (Consan) () x( ) 3 () x (), x() 3 y( ) [ ] 3 y [ ] () x() { x2, x() 2, x2() Ex.2 Ramp signal (Polynomial of ) () x (), x() x() d + + 2( ) x y [ ] + () x() y() [ ] + Ex.3 igonomeic funcions x2, 2 x () (), () x2 x2, x2() x x x 2() cos, x() sin sin y [ ] () x() y () [ ] cos cos y x,

Sevo Poblem Obain a conol inpu u() so ha he sysem oupu y() coincides wih he efeence y (). () () () A x, x x, x R y () () () () Ax + bu, x x, x R y c () x() c () x () Deemine a conol inpu u*() so ha he sysem oupu y() y (),. y* () y () u*(): ideal inpu, x*(): ideal sae, y*(): ideal oupu *() Ax* ()+ bu* (), x* () x () A x(), x() x x* () c x () c n n

Goal y*( ) () Inenal Model Pinciple x () x() x* () x () y c * c cx( ) c x( ) x * x () () A * A () x + * () bu () A () + bu* () bu *( ) A A x () * ( ) ( ) c bs x () A A x () Inenal Model Pinciple A c A c b s x c Linea elaion u () s x () s Linea elaion b A A and s obained fom Inenal Model Pinciple give he ideal conol inpu u* ha achieves he Goal y*()y ()

Sevomechanism design based on Sae Feedback Conol x() x () : impossible in geneal x () x () x() x () x() * * ( ) u () * ε u () u() : diffeence beween ideal conol and eal conol x () * ε x () x () : diffeence beween ideal sae and eal sae Eo sysem () Ax () + bu (), x () x x ε ε ε ε Deemine uε so ha xε and uε conveges o zeo as fas as possible. Design Sae Feedback uεk xε fo Pole Assignmen fo A+b k Possible if (A,b) is conollable

Sevomechanism design based on Sae Feedback Conol u () k x () : Sae feedback law fo eo sysem ε ε uε u u * () () (), xε x x ( ) * * u u k x x () () () () * u s () x (), x * * () () () () x () coninued ( ) u () k x() + s k x () Feed fowad of efeence sysem sae Sae feedback fo oiginal sysem Obseve design

Block Diagam of Sae-feedback-based Sevo Mechanism ( s ) x u () k x() + k () Esimaed by Sae Obseve

Design Example Design a sevomechanism o follow he efeence wih convegence speed specified wih poles {-2,-3} fo he linea sysem: Seps fo soluion () () (), () 3 2 x + u x y () x() [ ] y () cos. Make a efeence sysem o geneae he efeence signal y () 2. Calculae and s fo he esulan sevo-sysem o saisfy he Inenal Model Pinciple A A bs, c c 3. Calculae he sae feedback gain k o ealize he specified convegence speed by pole assignmen 4. Simulae he behavio of he esulan sevomechanism (Make an augmened sysem fo () x() x () ) [ ]

Design example - sep () x (), x() y () x () [ ] x( ) sin x () cos 2 (Alenaive) x () y () cos, x () () sin 2 x () sin () () x, x 2() cos x2 () x2() () x (), x() y () x () [ ] x x 2 ( ) () cos sin

Design example - sep 2/3 xy, v zu w s A A, Sep 2 Pu s b c c ha is, And solve he pinciple: x y x y x y z u 3 2 z u z u 2, s 2 Sep 3 Oiginal chaaceisic polynomial is s 3 2 3 s + 2 2 s s s I + 2 + 3 [ v w], [ ] [ ] Fom he desiable poles {-2,-3}, he ideal chaaceisic polynomial is 2 ( s+ 2)( s+ 3) s + 5s+ 6 Hence he sae feedback gain k is obained as k [ k k ] [ 3 2 ] [ 3 3] 6 5

Design example - sep 4 ( ) Ax( ) + bu (), x() x, x R, y( ) x( ) A x x x x R () n () (), (),, y() c x ) k x( ) + x( ) u ( ( s k ) k : deemined so ha x ε x*-x quickly conveges o () Ax() + b k x() + k x () { ( s ) } ( ) ( ) ( A bk x + b s k ) x () + ( ) Ox() + A x ( ) ( s ) x () A+ bk b k x() x(), () () () O A x x x y () c x() y() () c x n () Ax (), (), x R 2 y () Cx (), y R c n+ n

Design example Design/Simulaion pogam /3 H Pocess L n 2; n 2; m ; A 88, <, 8 3, 2<<; b 88<, 8<<; c 88, <<; x 8, <; AJ 3 2 N bj N c^h L x_j N A_J N c_^h L x_j N H Refeence geneao L A 88, <, 8, <<; c 88, <<; x 8, <; Pin@"A", A êê MaixFom, " b", b êê MaixFom, " c^", c êê MaixFom, " x_", x êê MaixFomD Pin@"A_", A êê MaixFom, " c_^", c êê MaixFom, " x_", x êê MaixFomD

Design example Design/Simulaion pogam 2/3 H Inenal Model Pinciple L 88, 2<, 82, 22<<; s 88s, s2<<; Eq 8.A A. b.s, c. c<; Sol Flaen@Solve@Flaen@EqD, Flaen@8, s<ddd; ê. Sol; J s s ê. Sol; Pin@"", êê MaixFom, " s^", s êê MaixFomD N s^h 2 2L H Pole Assignmen fo Eo Sysem L ChCoef Flaen@ake@A, DD; H Coefficiens of chaceisic equaion L OpPole 8 2, 3<; OpChPoly ; H Opimal chaaceisic polynomial L Do@OpChPoly OpChPoly Hs OpPole@@iDDL, 8i,, n<d OpCoef 8<; H Opimal coefficiens L Do@OpCoef Append@OpCoef, Coefficien@OpChPoly, s, idd, 8i,, n <D Feedback gain fo σ^ 8 2, 3< is k^h 3 k 8ChCoef OpCoef<; Pin@"Feedback gain fo σ^ ", Ldes, " is k^", k êê MaixFomD 3 L

Design example Design/Simulaion pogam 3/3 H Make Simulaion Sysem HAugmened SysemL L M Join@A + b.k, able@, 8i, 2<, 8j, 2<DD; M2 Join@b.Hs k.l, AD; AA anspose@join@anspose@md, anspose@m2ddd; Pin@"AA", AA êê MaixFom, " CC", CC êê MaixFomD Pin@"Eigenvalues of AA", Eigenvalues@AADD M Join@c, able@, 8i, <, 8j, 2<DD; M2 Join@able@, 8i, <, 8j, 2<D, cd; CC anspose@join@anspose@md, anspose@m2ddd; H Rewie fom SaeEquaion L i n 4; vx able@x@id@d, 8i, n<d; AA vx Join@x, xd; j k f 3 Pi; Equ able@x@id @D HAA.vxLPi, 8i,, n<d; IC able@x@id@d vxpi, 8i,, n<d; DE Join@Equ, ICD; Sol NDSolve@DE, vx, 8,, f<d; y 6 5 5 5 z { CCJ N Plo@Evaluae@CC.vx ê. SolD, 8,, f<, PloRange All, Fame ue, FameLabel 8" @secd", "yhl & yhl"<, DefaulFon > 8"Helveica", 5<, GidLines Auomaic, PloSyle 88RGBColo@,, D, hickness@.3d<, 8RGBColo@,, D, hickness@.7d<<d

Refeence & Oupu.5 y HL &yhl -.5-2 4 6 8 @secd

Saes of efeence sysem & plan.5 x HL &xhl -.5-2 4 6 8 @secd

Response fo anohe iniial sae AJ 3 2 N bj N c^h L x_j N y HL &yhl.5 -.5 x HL &xhl.5 -.5-2 4 6 8 @secd - 2 4 6 8 @secd

Pole assignmen fo fase convegence Feedback gain fo σ^ 8 5, 6< is k^h 27 i y 3 29 A j z k { CCJ N 9 L y HL &yhl.5 -.5 x HL &xhl.5 -.5-2 4 6 8 @secd - 2 4 6 8 @secd

Pole assignmen fo slowe convegence Feedback gain fo σ^ 8.5,.6< is k^h 2.7.9 L i.... y.3..7. AA j z k { CCJ N y HL &yhl.5 -.5 x HL &xhl.5 -.5-2 4 6 8 @secd - 2 4 6 8 @secd

Response fo fase efeence A_J 2 2 N c_^h L x_j i 2 j N y z k s^i 2 { 2 M y HL &yhl.5 -.5 x HL &xhl.5 -.5-2 4 6 8 @secd - 2 4 6 8 @secd

Design Pacice Design a sevomechanism o follow he efeence wih convegence speed specified wih poles {-4±2j} fo he linea sysem: () () (), () 3 2 x + u x y () x() [ ] y () sin2