Changchang Xi ( ~)

Similar documents
Infinite dimensional tilting modules, homological subcategories and recollements. Changchang Xi ( ~) Capital Normal University Beijing, China

ALGEBRAIC STRATIFICATIONS OF DERIVED MODULE CATEGORIES AND DERIVED SIMPLE ALGEBRAS

Auslander-Yoneda algebras and derived equivalences. Changchang Xi ( ~) ccxi/

Good tilting modules and recollements of derived module categories, II.

Infinite dimensional tilting theory

THE TELESCOPE CONJECTURE FOR HEREDITARY RINGS VIA EXT-ORTHOGONAL PAIRS

CELLULAR ALGEBRAS AND QUASI-HEREDITARY ALGEBRAS: A COMPARISON

RECOLLEMENTS GENERATED BY IDEMPOTENTS AND APPLICATION TO SINGULARITY CATEGORIES

Derived Equivalences of Triangular Matrix Rings Arising from Extensions of Tilting Modules

Ringel modules and homological subcategories

In memoriam of Michael Butler ( )

QUASI-HEREDITARY ALGEBRAS: BGG RECIPROCITY

KOSZUL DUALITY FOR STRATIFIED ALGEBRAS I. QUASI-HEREDITARY ALGEBRAS

Locality for qc-sheaves associated with tilting

Gorenstein Algebras and Recollements

The preprojective algebra revisited

One-point extensions and derived equivalence

arxiv: v1 [math.rt] 11 Dec 2015

A BRIEF INTRODUCTION TO GORENSTEIN PROJECTIVE MODULES. Department of Mathematics, Shanghai Jiao Tong University Shanghai , P. R.

Derived Canonical Algebras as One-Point Extensions

REFLECTING RECOLLEMENTS

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

DERIVED CATEGORIES AND ALGEBRAIC GROUPSlJ2. Leonard L. Scott

TILTING MODULES AND UNIVERSAL LOCALIZATION

REFLECTING RECOLLEMENTS. A recollement of triangulated categories S, T, U is a diagram of triangulated

An Axiomatic Description of a Duality for Modules

On the number of terms in the middle of almost split sequences over cycle-finite artin algebras

arxiv: v3 [math.rt] 28 Sep 2016

arxiv:math/ v3 [math.rt] 3 Jan 2008

Artin algebras and infinitely generated tilting modules

On root categories of finite-dimensional algebras

A BRIEF INTRODUCTION TO GORENSTEIN PROJECTIVE MODULES. Shanghai , P. R. China

Tilting Preenvelopes and Cotilting Precovers

arxiv: v2 [math.rt] 15 Nov 2014

Combinatorial aspects of derived equivalence

arxiv:math/ v2 [math.rt] 9 Feb 2004

A visual introduction to Tilting

Representation Dimension and Quasi-hereditary Algebras

ON THE NUMBER OF TERMS IN THE MIDDLE OF ALMOST SPLIT SEQUENCES OVER CYCLE-FINITE ARTIN ALGEBRAS

Homological Theory of Recollements of Abelian Categories

TRIVIAL MAXIMAL 1-ORTHOGONAL SUBCATEGORIES FOR AUSLANDER 1-GORENSTEIN ALGEBRAS

STABILITY OF FROBENIUS ALGEBRAS WITH POSITIVE GALOIS COVERINGS 1. Kunio Yamagata 2

ALGEBRAS OF DERIVED DIMENSION ZERO

Simulating Algebraic Geometry with Algebra, I: The Algebraic Theory of Derived Categories

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Preprojective algebras, singularity categories and orthogonal decompositions

Towers of algebras categorify the Heisenberg double

RECOLLEMENTS AND SINGULARITY CATEGORIES. Contents

Tilting categories with applications to stratifying systems

Genus zero phenomena in noncommutative algebraic geometry

DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL 3 (WITH AN APPENDIX BY C.M. RINGEL)

AUSLANDER REITEN TRIANGLES AND A THEOREM OF ZIMMERMANN

KOSZUL DUALITY FOR STRATIFIED ALGEBRAS II. STANDARDLY STRATIFIED ALGEBRAS

Aisles in derived categories

ON SPLIT-BY-NILPOTENT EXTENSIONS

REPRESENTATION DIMENSION OF ARTIN ALGEBRAS

Cluster-Concealed Algebras

arxiv: v1 [math.rt] 22 Dec 2008

Iwasawa algebras and duality

Notes on p-divisible Groups

DERIVED CATEGORIES IN REPRESENTATION THEORY. We survey recent methods of derived categories in the representation theory of algebras.

Approximation properties of the classes of flat modules originating from algebraic geometry

APPROXIMATIONS AND MITTAG-LEFFLER CONDITIONS

Applications of geometry to modular representation theory. Julia Pevtsova University of Washington, Seattle

INFINITE DIMENSIONAL REPRESENTATIONS CONTENTS

Periodicity of selfinjective algebras of polynomial growth

SOME USES OF SET THEORY IN ALGEBRA. Stanford Logic Seminar February 10, 2009

The real root modules for some quivers.

The homotopy categories of injective modules of derived discrete algebras

GENERALIZED MORPHIC RINGS AND THEIR APPLICATIONS. Haiyan Zhu and Nanqing Ding Department of Mathematics, Nanjing University, Nanjing, China

AUSLANDER-REITEN THEORY FOR FINITE DIMENSIONAL ALGEBRAS. Piotr Malicki

FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALISATIONS OF COMMUTATIVE RINGS

ON MINIMAL APPROXIMATIONS OF MODULES

arxiv: v1 [math.rt] 11 Sep 2009

ON THE GEOMETRY OF ORBIT CLOSURES FOR REPRESENTATION-INFINITE ALGEBRAS

Relative Left Derived Functors of Tensor Product Functors. Junfu Wang and Zhaoyong Huang

Projective and Injective Modules

Isotropic Schur roots

Representation type, boxes, and Schur algebras

Oberseminar Perverse equivalences and applications WS 2018/19

Properly stratified algebras and tilting

FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALISATIONS OF COMMUTATIVE RINGS

INTRO TO TENSOR PRODUCTS MATH 250B

LECTURE 4.5: SOERGEL S THEOREM AND SOERGEL BIMODULES

Journal of Pure and Applied Algebra

`-modular Representations of Finite Reductive Groups

K-theory and derived equivalences (Joint work with D. Dugger) Neeman proved the above result for regular rings.

ADE Dynkin diagrams in algebra, geometry and beyond based on work of Ellen Kirkman

Applications of exact structures in abelian categories

LECTURE NOTES DAVID WHITE

STANDARD COMPONENTS OF A KRULL-SCHMIDT CATEGORY

MODULE CATEGORIES WITH INFINITE RADICAL SQUARE ZERO ARE OF FINITE TYPE

n-x-injective Modules, Cotorsion Theories

DERIVED EQUIVALENCES AND GORENSTEIN PROJECTIVE DIMENSION

arxiv: v2 [math.rt] 2 Dec 2011

Examples of Semi-Invariants of Quivers

Dedicated to Helmut Lenzing for his 60th birthday

Modularity of Galois representations. imaginary quadratic fields

AN AXIOMATIC CHARACTERIZATION OF THE GABRIEL-ROITER MEASURE

Extensions of covariantly finite subcategories

Transcription:

Noncommutative Algebraic Geometry: Shanghai Workshop 2011, Shanghai, China, September 12-16, 2011 Happel s Theorem for Infinitely Generated Tilting Modules Changchang Xi ( ~) Beijing, China Email: xicc@bnu.edu.cn

Overview Given an infinitely generated tilting module, the category of its endomorphism ring admits a recollement by of rings Jordan-Hölder Theorem fails for stratifications of module by module. This talk reports a part of joint works with Hongxing Chen.

Schedule I. II. on tilting modules III. IV. V. Stratifications of

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Notations R : ring with 1 R-Mod: cat. of all left R-modules R-mod: cat. of f. g. left R-modules M: R-module M (I) : direct sum of I copies of M Add(M) : full subcat. of R-Mod, dir. summands of M (I) add(m) : full subcat. of R-mod, dir. summands of M (I),I : finite pd(m) : proj. dim. of M

Tilting modules Tilting modules (or tilting complexes, objects) occur in Repr. Theory of Algebras. Linked to: Algebraic groups (Donkin s works) Lie Theory (Irving, Cline-Parshall-Scott, Soegel) Algebraic geometry (Lenzing s works) Modular representation theory of f. groups (Broué s conjecture)

Tilting modules Tilting modules (or tilting complexes, objects) occur in Repr. Theory of Algebras. Linked to: Algebraic groups (Donkin s works) Lie Theory (Irving, Cline-Parshall-Scott, Soegel) Algebraic geometry (Lenzing s works) Modular representation theory of f. groups (Broué s conjecture)

Tilting modules Tilting modules (or tilting complexes, objects) occur in Repr. Theory of Algebras. Linked to: Algebraic groups (Donkin s works) Lie Theory (Irving, Cline-Parshall-Scott, Soegel) Algebraic geometry (Lenzing s works) Modular representation theory of f. groups (Broué s conjecture)

Tilting modules Tilting modules (or tilting complexes, objects) occur in Repr. Theory of Algebras. Linked to: Algebraic groups (Donkin s works) Lie Theory (Irving, Cline-Parshall-Scott, Soegel) Algebraic geometry (Lenzing s works) Modular representation theory of f. groups (Broué s conjecture)

Definitions of f. g. tilting modules RT R-mod is called a classical tilting module if (1) exact seq. in R-mod with P j proj. : 0 P n P 0 T 0. (2) Ext i R (T,T) = 0 for all i > 0. (3) exact seq. 0 R T 0 T 1 T m 0, T i add(t). Brenner-Butler (1979), Happel-Ringel (1982), Miyashita (1986).

General definition of tilting modules RT R-Mod is called a tilting module if (1) pd( R T) <, (2) Ext i R (T,T(I) ) = 0 for all sets I, i > 0. (3) exact seq. 0 R T 0 T 1 T m 0, T i Add(T). In 1995 by Colpi-Trlifaj, Bazzoni.

Good tilting modules T: tilting R-module is called good if the T i add(t) in for all i. (3) : 0 R T 0 T 1 T m 0

Good tilting modules Relationship: Classical tilting = Good tilting = Tilting T: tilting = T := n j=0 T j is good. Note: T and T have the same torsion theory in R-Mod.

Tilting modules of projective dimension one From now on, in this talk, By tilting modules we mean tilting modules of pd at most 1, that is, (1) pd( R T) 1, (2) Ext 1 R (T,T(I) ) = 0 for all sets I, (3) exact seq. 0 R T 0 T 1 0, T i Add(T).

Examples All tilting modules in the sense of Brenner-Butler (1979), Happel-Ringel (1982). T := Z Q/Z: tiling Z-module. (Angeleri-Hügel + Sanchez): R S: injective ring epi, pd( R S) 1, = T := S S/R is tilting R-module.

Examples All tilting modules in the sense of Brenner-Butler (1979), Happel-Ringel (1982). T := Z Q/Z: tiling Z-module. (Angeleri-Hügel + Sanchez): R S: injective ring epi, pd( R S) 1, = T := S S/R is tilting R-module.

Examples All tilting modules in the sense of Brenner-Butler (1979), Happel-Ringel (1982). T := Z Q/Z: tiling Z-module. (Angeleri-Hügel + Sanchez): R S: injective ring epi, pd( R S) 1, = T := S S/R is tilting R-module.

Happel s Theorem or Happel-Cline-Parshall-Scott Theorem Two of many beautiful results in tilting theory. Theorem T : f. g. tilting R-module ( equiv.ly, classical) S : = End R (T), = D(R) D(S) (as triang. cat.s). D(R) : the unbounded cat. of R-Mod

Happel s Theorem or Happel-Cline-Parshall-Scott Theorem Two of many beautiful results in tilting theory. Theorem T : f. g. tilting R-module ( equiv.ly, classical) S : = End R (T), = D(R) D(S) (as triang. cat.s). D(R) : the unbounded cat. of R-Mod

Comments on f. g. tilting modules Positive aspect: Invariants of der. equivalences. Negative aspect: f. g. tilting modules will NOT provide us new der..

Bazzoni s Theorem Theorem T : S : j! : = good tilting R-module, = End R (T), = T L S, the left total der. functor. Ker(j! ) D(S) j! D(R). Ker(j! ) = 0 T : classical.

Definition of recollements Beilinson, Bernstein and Deligne (1981): D,D,D : triang. cat.s. D : recollement of D and D if 6 triangle functors: i j! D i =i! D j! =j i! j D

Definition of reollements 4 adjoint pairs, 3 fully faithful functors, 3 zero-compositions, 2 extension properties: for C D, triangles in D: i! i! (C) C j j (C) i! i! (C)[1] j! j! (C) C i i (C) j! j! (C)[1].

Back to Bazzoni s Theorem and questions T : good tilting R-module, S := End R (T). Then: Recollement Ker(j! ) D(S) j! D(R). Question: (1) What is Ker(j! )? (2) Can it be D(R ) for some ring R?

Back to Bazzoni s Theorem and questions T : good tilting R-module, S := End R (T). Then: Recollement Ker(j! ) D(S) j! D(R). Question: (1) What is Ker(j! )? (2) Can it be D(R ) for some ring R?

Universal localizations R,S : rings with 1. S: universal localization of R if (1) Σ = {f : P 1 P 0 P i f.g. proj. R-mod.s}, (2) λ : R S: ring hom. s. t. S R f is iso. for f Σ, and (3) λ is universal with (2).

Theorem T : good tilting R-module S : = End( R T), j! := T L S = ring epi S U, recollement: D(U) D(S) j! D(R). Note: U is universal localization of S.

Corollary of the main result Corollary R S : inj. ring epi., pd( R S) 1, Tor R 1 (S,S) = 0, T := R S/R, B := End R (T). = recollement: D(S R S ) D(B) D(R). S := End R (S/R), S R S : coproduct of S and S over R.

Definition of stratifications For groups: Exact sequences simple groups, composition series For : simple, stratifications

Definition of der. simple D(R): simple if there is no non-trivial recollement of the form D(R 1 ) D(R) D(R 2 ), R i : rings.

Definition of stratifications of der. module A stratification of D(R) is a series of reollements: D(R 1 ) D(R) D(R 2 ), D(R 11 ) D(R 1 ) D(R 12 ), D(R 21 D(R 2 ) D(R 22 ), and so on, s.t. all R i,r ij,, are der. simple.

Question Jordan-Hölder Theorem: For a finite group, all composition series have the same length and the same composition factors. Question: Is this Theorem true for stratifications of D(R) of a ring R? (up to der. equiv.) Note: This is a question by Angeleri-Hügel, König and Liu.

Question Jordan-Hölder Theorem: For a finite group, all composition series have the same length and the same composition factors. Question: Is this Theorem true for stratifications of D(R) of a ring R? (up to der. equiv.) Note: This is a question by Angeleri-Hügel, König and Liu.

Question Jordan-Hölder Theorem: For a finite group, all composition series have the same length and the same composition factors. Question: Is this Theorem true for stratifications of D(R) of a ring R? (up to der. equiv.) Note: This is a question by Angeleri-Hügel, König and Liu.

Answers Corollary ring with two stratifications of length 2 and 3, and different composition factors. Jordan-Hölder Theorem fails for D(R), in general.

References Preprint is available at: http://math.bnu.edu.cn/ ccxi/ H. X. CHEN and C. C. XI, Good tilting modules and recollements of module. Preprint, arxiv:1012.2176v1, 2010. H. X. CHEN and C. C. XI, Stratifications of from tilting modules over tame hereditary algebras. Preprint, arxiv:1107.0444, 2011. ********