Algebraic number theory Revision exercises

Similar documents
Algebraic number theory Solutions to exercise sheet for chapter 4

Algebraic number theory

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

FACTORIZATION OF IDEALS

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

FACTORING AFTER DEDEKIND

Explicit Methods in Algebraic Number Theory

Some algebraic number theory and the reciprocity map

Algebraic integers of small discriminant

Solutions of exercise sheet 6

THE DIFFERENT IDEAL. Then R n = V V, V = V, and V 1 V 2 V KEITH CONRAD 2 V

Maximal Class Numbers of CM Number Fields

x mv = 1, v v M K IxI v = 1,

18. Cyclotomic polynomials II

Math 6370: Algebraic Number Theory

These warmup exercises do not need to be written up or turned in.

p-adic fields Chapter 7

THE SPLITTING FIELD OF X 3 7 OVER Q

Math 210B: Algebra, Homework 6

Galois theory (Part II)( ) Example Sheet 1

Math 121 Homework 2 Solutions

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

Continuing the pre/review of the simple (!?) case...

MATH 113 FINAL EXAM December 14, 2012

1 Number Fields Introduction Algebraic Numbers Algebraic Integers Algebraic Integers Modules over Z...

Solutions of exercise sheet 11

Graduate Preliminary Examination

Residual modular Galois representations: images and applications

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes.

Number Theory Fall 2016 Problem Set #3

A BRIEF INTRODUCTION TO LOCAL FIELDS

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

Algebraic proofs of Dirichlet s theorem on arithmetic progressions

STEP Support Programme. Hints and Partial Solutions for Assignment 17

(January 14, 2009) q n 1 q d 1. D = q n = q + d

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

ALGEBRAIC NUMBER THEORY - COURSE NOTES

Section IV.23. Factorizations of Polynomials over a Field

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND.

Absolute Values and Completions

FACTORING IN QUADRATIC FIELDS. 1. Introduction

Solutions 13 Paul Garrett garrett/

A connection between number theory and linear algebra

x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0

1. a) Let ω = e 2πi/p with p an odd prime. Use that disc(ω p ) = ( 1) p 1

Algebra Qualifying Exam Solutions. Thomas Goller

Honors Algebra 4, MATH 371 Winter 2010 Assignment 3 Due Friday, February 5 at 08:35

Dirichlet s Theorem and Algebraic Number Fields. Pedro Sousa Vieira

c ij x i x j c ij x i y j

arxiv: v1 [math.nt] 2 Jul 2009

Thus, the integral closure A i of A in F i is a finitely generated (and torsion-free) A-module. It is not a priori clear if the A i s are locally

CYCLOTOMIC FIELDS CARL ERICKSON

SOME SPECIAL VALUES OF COSINE

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ).

(IV.C) UNITS IN QUADRATIC NUMBER RINGS

Dirichlet Series Associated with Cubic and Quartic Fields

Quasi-reducible Polynomials

ON GALOIS GROUPS OF ABELIAN EXTENSIONS OVER MAXIMAL CYCLOTOMIC FIELDS. Mamoru Asada. Introduction

A SIMPLE PROOF OF KRONECKER-WEBER THEOREM. 1. Introduction. The main theorem that we are going to prove in this paper is the following: Q ab = Q(ζ n )

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

Contest Number Theory

Algebraic Number Theory

Math 261 Exercise sheet 5

Citation for published version (APA): Ruíz Duarte, E. An invitation to algebraic number theory and class field theory

Representation of prime numbers by quadratic forms

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

Lecture 11: Cantor-Zassenhaus Algorithm

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

IUPUI Qualifying Exam Abstract Algebra

ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

Math 581 Problem Set 5 Solutions

Section V.6. Separability

QUALIFYING EXAM IN ALGEBRA August 2011

Maximal subgroups of exceptional groups: representing groups in groups

GALOIS THEORY. Contents

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2013 Midterm Exam Solution

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

THE SPIEGELUNGSSATZ FOR p = 5 FROM A CONSTRUCTIVE APPROACH

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

Sample algebra qualifying exam

Fermat s Last Theorem for Regular Primes

Primes of the Form x 2 + ny 2

A Note on Cyclotomic Integers

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

1 Spring 2002 Galois Theory

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION ADVANCED ALGEBRA I.

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Cover Page. The handle holds various files of this Leiden University dissertation.

Math 129 Lecture Notes

Factorization in Integral Domains II

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Genus 2 Curves of p-rank 1 via CM method

Ramification Theory. 3.1 Discriminant. Chapter 3

Norm-Euclidean Ideals in Galois Cubic Fields

Transcription:

Algebraic number theory Revision exercises Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com) Version: March 2, 20 Exercise. What is the ring of integers of Q( 98)? Exercise 2. What kinds of number fields have a unit group of rank? Exercise 3. Compute the class group of Q( 4). Exercise 4. The aim of this exercise is to determine the class group of K = Q( 82), seen as a subfield of R.. Prove that the class group of K is either trivial or isomorphic to Z/2Z or Z/4Z. 2. What is the rank of the unit group of K? Compute a fundamental unit u > of K. 3. Suppose that there exist an element β = x + y 82 Z K of norm 2. Why may we assume that u < β < u? Prove that x y 82 = 2, use this to derive β bounds on x, and deduce that no such β exists. 4. Prove similarly that no element of Z K has norm 2. 5. What is the class group of K? 6. Was is absolutely necessary that the unit u be fundamental for the above reasoning to be valid? Exercise 5. Let f(x) = x 3 4x 2 + 2x 2, which is an irreducible polynomial over Q (why?), and let K = Q(α), where α is a root of f.. Given that disc f = 300, what can you say about the ring of integers of K and the primes that ramify in K? What if, on the top of that, you notice that f(x + 3) = x 3 + 5x 2 + 5x 5?

We have disc f = 300 = 2 2 3 5 2, so the order Z[α] is p-maximal at every prime p 2, 5. Besides, f is Eisenstein at 2, so Z[α] is actually also maximal at p = 2, and 2 is totally ramified in K; incidentally this also proves that f is irreducible as claimed. We thus have only two possibilities: either Z[α] is also maximal at p = 5, in which case Z K = Z[α], so that disc K = 2 2 3 5 2 and so K ramifies precisely at 2, 3 and 5, or Z[α] is not maximal at p = 5, in which case Z[α] has index exactly 5 (and not a larger power of 5 since 5 4 disc f), and so disc K = 2 2 3 so K is ramified precisely at 2 and 3, but not at 5. However, the fact that α 3 is a root of f(x + 3) which is Eisenstein at 5 proves that the order Z[α 3] is maximal at 5 and that 5 is totally ramified in K. But clearly Z[α 3] = Z[α], so Z[α] is in fact maximal at 5 and so Z K = Z[α] and K is ramified precisely at 2, 3 and 5. On the top of that, we have shown that 2 and 5 are actually totally ramified. We do not know yet whether 3 is totally ramified. 2. Prove that Z K is a PID. Hint: For n Q, what relation is there between f(n) and the norm of n α? Use this to find elements of small norm, and thus relations in the class group. Let (r, r 2 ) be the signature of K. As disc K = 300 < 0, we know that r 2 is odd, and so the relation r + 2r 2 = [K : Q] = 3 forces r = r 2 =. As a result, the Minkowski bound for K is M = 3! 4 3 π 300 4.9, so the class group of K is 3 generated by the primes above 2 and 3. We already know that 2 is totally ramified, say 2Z K = p 3 2, whence the relation [p 2 ] 3 = in the class group. To compute the decomposition of 3, we factor f mod 3 (this is legitimate because the order Z[α] attached to f, being maximal at every p, is in particular maximal at 3). We thus compute that f x 3 x 2 x + mod 3 (x )(x 2 ) (x ) 2 (x + ) mod 3, whence the decomposition 3Z K = p 2 3p 3, where p 3 = (3, α ) and p 3 = (3, α+). We also get the relation [p 3 ] 2 [p 3] = in the class group. Now that we have generators, we need to find relations between these generators. For this, we look for elements of small norm : if the norm of an element only involves powers of 2 and 3, then the principal ideal generated by this element will have the same norm (up to sign), and so its factorisation will only involve p 2, p 3 and p 3, whence a relation between [p 2 ], [p 3 ] and [p 3]. We have N(n α) = σ(n α) = ( ) n σ(α) = f(n) σ : K C σ : K C for all n Q where the products range over the embeddings of K into C, so we can use this formula to compute the norm of elements of the form n α. For example, we have N(α) = f(0) = 2, whence (α) = q 2 where q 2 is some prime of inertial degree above 2, which can only be p 2. Thus [p 2 ] =. 2

Similarly, we have N( α) = f() = 3, so ( α) = q 3 for some prime q 3 of degree above 3. Thanks to the criterion p (β) (β) p β p valid for all prime p and element β Z K, we see that ( α) = p 3. Therefore [p 3 ] = and so [p 3] =, so the class group is trivial and Z K is a PID. 3. Find a generator for each of the primes above 2, 3 and 5. We have already proved that p 2 = (α) and that p 3 = (α ). Besides, we know that (5) = p 3 5 is totally ramified, and since α 3 is a root of f(x + 3) = x 3 + 5x 2 + 5x 5, we have N(α 3) = 5 whence p 5 = (α 3). It remains to find a generator for p 3. For this, we can use the relation (3) = p 2 3p 3 = (α ) 2 p 3 to deduce that p 3 = (β) where β = 3. Note that we get (α ) 2 for free that β is an algebraic integer, and that its norm is ±3. There is (at least) one other easy way to find a generator for p 3: we have N(2 α) = f(2) = 6, so the ideal (2 α) factors as q 2 q 3, a,d as in the previous question we see that q 2 = p 2 and that q 3 = p 3. Thus p 3 = (2 α)/(α) = (β ), where β = 2 α α = 2 α = α2 4α + in view of the relation f(α)/α = 0. 4. Use the results of the previous question to discover that u = 2α 2 α + is a unit. The key to discovering units is finding more than one generator for the same principal ideal. For instance, we have just seen that p 3 = (β) = (β ), so β /β is a unit. Unfortunately, it turns out that β β = (α )2 (α2 4α + ) 3 so this unit is not a very interesting one... =, Let s try again : we have (2) = p 3 2 = (α) 3 = (α 3 ), so u = α 3 /2 = 2α 2 α + is a unit. We could also have used the fact that (5) = (α 3) 3 to discover the unit v = (α 3)3 = α 2 + 5α 5. 5 5. We use the unique embedding of K into R to view K as a subfield of R from now on. Prove that there exists a unit ε Z K such that Z K = {±εn, n Z} and ε >. According to Dirichlet s theorem, the rank of Z K is r + r 2 =. Besides, as K can be embedded into R, the only roots of unity it contains are ±, so Z K = {±εn, n Z} for some fundamental unit ε. Possibly after replacing ε with ±ε ± which is also a fundamental unit, we may assume that ε >. Note that since Z k has rank, there must be a relation between our units u and v; indeed it turns out that v = /u. 3

6. By the technique of exercise 2 from exercise sheet number 5, it can be proved that ε 4.. Given that u 23.3, prove that u is a fundamental unit. Hint : Reduce u modulo the primes above 3 to prove that u is not a square in Z K. What is the regulator of K? We have u = ±ε n for some n Z. As u >, we must in fact have u = ε n for some n > 0. Besides, since ε > 4., we have n 2. As a result, we either have u = ε or u = ε 2 ; in the first case, u is a fundamental unit, in the second case it isn t. In order to prove that u is fundamental, we are going to prove that u is not a square in K. As u is a unit, its norm is ±, so we could conclude immediately if its norm were ; unfortunately N(u) = +, so we must find something else. The key is to compute the reduction of u modulo some primes p : if we get a non-square in the finite field Z K /p, this will prove that u is not a square. Now, every element of F 2 is a square, so let us not consider p = p 2. Let us try p = p 3 instead : we have α p 3, so α mod p 3 and so u = 2α 2 α+ 2 mod p 3, which is not a square in Z K /p 3, bingo! You may check that, on the other hand, p = p 3 and p 5 were inconclusive. As a consequence, the regulator of K is log ε = log u. (This turns out to be pretty close to π, but this is purely coincidental.) Exercise 6. Let f(x) = x 4 +3x 3 8x 2 24x+29, which is an irreducible polynomial over Q (why?), and let K = Q(α), where α is a root of f.. If I told you that disc f = 930069, why would not that be very useful to you? Which information can you get from that nonetheless? The primary use of the discriminant is the determination of the ring of integers and of the ramification of the primes. However, this is done in terms of the factorisation of the discriminant, and since we d rather not factor 930069 by hand there is not much we can do. There is still something though : since we are dealing with a field of degree 4, the possible signatures are (r, r 2 ) = (4, 0), (2, ) and (0, 2), and the fact that disc f > 0 and that disc K differs from it by a square means that disc K > 0, so r 2 is even. As a result, our field K is either totally real or totally imaginary. 2. I now tell you that the roots of f are approximately 4. ± 0.i and 2.6 ±.0i. What is the signature of K? Can you compute the trace of α from these approximate values? Why is the result obvious? The non-realness of the roots means that K is totally imaginary, so its signature is in fact (0, 2). The roots of f are the images of α under the embeddings of K into C, so Tr(α) is the sum of these roots, which is approximately 3. But α is an algebraic integer, so its trace is an integer and so Tr(α) = 3 exactly. However, we already knew that : the trace of an algebraic number is minus the 4

coefficient of x n in its characteristic polynomial (same rule as for matrices). As f is irreducible, it is the characteristic polynomial of α, and so Tr(α) = 3. 3. If I now tell you that disc f factors as 3 3 2 9 3, what can you say about the ring of integers of K and the primes that ramify in K? We immediately see that Z[α] is maximal at every prime except possibly at 3 and, and that its index is at most 3. Even if 3 did divide the index, disc K would still be divisible by 3 because 3 shows up to an odd power in disc f, so 3 is definitely ramified in K, and so are 9 and 3. The factor 2 in disc f could either come from disc K, in which case ramifies and Z[α] is maximal at, or from the index of Z[α], in which case does not ramify and Z[α] is not maximal at. The other primes are unramified in K. One last thing : if you pay attention enough (and you should!), you ll notice that f is Eisenstein at 3 (and hence irreducible as claimed). As a result, Z[α] is maximal at 3, and 3 is totally ramified in K. Thus either Z[α] has index and does not ramify, or Z[α] = Z K and does ramify. In the former case, there would exists elements of Z K which, when written as polynomials in α, would have a non-trivial denominator, which would be powers of only. 4. In principle (don t actually do it), how could you test whether β = α3 2α 2 α+2 is an algebraic integer? I d compute its characteristic polynomial : β is an algebraic integer if and only if this polynomial lies in Z[x]. To do so, I could for example use the formula χ(β) = ( ) ( ) x σ(β) = x z3 2z 2 z + 2 σ : K C z C f(z)=0 ( ) = Res y f(y), x y3 2y 2 y + 2. 5. If I now tell you that the characteristic polynomial of β is χ(β) = x 4 + 28x 3 + 20x 2 + 54x + 24, whose discriminant is disc χ(β) = 2536499366, which conclusions can you draw from that? Lots of conclusions. First, since χ(β) lies in Z[x], we see that β is an algebraic integer, so that Z K is strictly larger than Z[α]. In view of question 3, this means that Z[α] has index, that does not ramify in K, and that disc K = 3 3 9 3. Besides, Z[α, β] is an order which is strictly larger than Z[α], its index is strictly smaller (by a factor which is a power of to be precise, since the denominator of β w.r.t. Z[α] is ), and since the index of Z[α] is which is prime, we must have Z K = Z[α, β]. Finally, since disc χ(β) 0, χ(β) is squarefree. It is thus the minimal polynomial of β (remember proposition.2.8), so β has degree 4 and is thus another primitive element for K. Since it is also an algebraic integer, Z[β] is an order in K. 5

6. Given that disc χ(β) factors as 2 4 3 3 4 9 3, what is the index of the order Z[β]? What consequence does this have on the expression of a Z-basis of Z K in terms of β? The formula disc O = [Z K : O] 2 disc K shows that the index of Z[β] is 2 2 2. A consequence of this is that if we were to elements of Z K as polynomials in β, we would get non-trivial denominators, which would be made up of powers of 2 and.. Let γ = β2 3β 3, and let δ = β3 2β 9, whose respective characteristic polynomials are χ(γ) = x 4 3x 3 +42x 2 +8x+ and χ(δ) = x 4 +39x 3 +563x 2 +93. 34 34 Prove that {, β, γ, δ} is a Z-basis of Z K. As β is a primitive element for K, the elements, β, β 2 and β 3 form a Q-basis of K. Since the elements, β, γ, δ are in echelon form with respect to this basis, they also form a Q-basis of K. Let Λ be the lattice they span. The fact that χ(γ) and χ(δ) lie in Z[x] shows that γ and δ are algebraic integers, so Λ Z K. Besides, it is clear that Λ Z[β]. The change of basis matrix between the two aforementioned bases of K is 0 3 9 34 34 0 3 2 34 34 0 0 0 34 0 0 0 34 whose determinant is clearly /34 2. As these bases are Z-bases of Z[β] and of Λ, this means that [Λ : Z[β]] = 34 2 = 2 2 2 = [Z K : Z[β]]. The containment Λ Z K and the equality of indices then forces Λ = Z K. Note that we get for free the fact that Λ is stable under multiplication, which was by no means obvious. 8. Compute explicitly the decomposition of 2, 3, and in K. Since Z[α] is maximal at 2, we may compute the decomposition of 2 by factoring f mod 2. Clearly, neither 0 nor is a root of f mod 2, so f is either irreducible or the product of 2 irreducible factors of degree 2. The only polynomials of degree 2 over F 2 are x 2, x 2 +, x 2 + x and x 2 + x +, and clearly only the last one is irreducible. Therefore, if f mod 2 were reducible, it would be (x 2 + x + ) 2, but this is impossible. There are two ways to see why : we can use the fact that we are in characteristic 2 to compute that (x 2 + x + ) 2 = x 22 + x 2 + 2 f mod 2, or we can say that if f were not squarefree mod 2, then its discriminant would be 0 mod 2, which we know is not the case. Either way, we deduce that f remains irreducible mod 2, so that 2 is inert in K. In symbols, 2Z K = p 2 is a prime of norm 2 4. 6

We have already seen that 3 is totally ramified in K. To be more precise, as Z[α] is maximal at 3 it is legitimate to factor f mod 3; we find f x 4 mod 3, whence 3Z K = p 4 3, where p 3 = (3, α) is a prime of norm 3. Finally, we may not determine the decomposition of by factoring f mod, because the order Z[α] is not maximal at. However, since 2 disc χ(β), the order Z[β] is maximal at, so we are saved. We have χ(β) x 4 3x 2 + 2 (x 2 )(x 2 2) (x )(x + )(x 3)(x + 3) mod, so is totally split. Z K = (, β )(, β + )(, β 3)(, β + 3) 9. What is the rank of the unit group of K? Can you spot a nontrivial (i.e. not ±) unit of K? Since the signature of K is (0, 2), the rank of Z K is 0 + 2 =. The fact that the constant term of χ(γ) is indicates that N(γ) = ( ) 4, so γ is a unit of norm +. 0. What can you say about the roots of unity contained in K? How could you use this to test whether the unit you spotted in the previous question if a root of unity? If we had a p-th root of in K where p is an odd prime, then K would contain the p-th cyclotomic field, whose degree is p and which is ramified at p; therefore the degree of K would be a multiple of (p ) and p would ramify in K. This excludes all the possibilities, except p = 3. If we did have a 3rd root of, say ζ, in K, then we would also have ζ K, which is a 6th root of. According to proposition 5.2.9, we would then have N(p) mod 6 for every prime p not above 2 or 3, but this is not contradictory with the decomposition of in K. So, all we can say is that the roots of unity in K are either the 6th roots of unity, or just ±. In any case, a root of unity u K would satisfy u 6 =, so we could determine whether γ is a root of unity by checking if γ 6 =. (In fact, we could save ourselves some effort by checking if γ 2 ± γ + = 0 thank you, cyclotomic polynomials!). In fact, it turns out that K does contain the 6th roots of unity, that γ is not a root of unity, and that γ is in fact a fundamental unit of K, as luck would have it. However, I really do not think this can be proved without massive help from a computer.