-statistical convergence in intuitionistic fuzzy normed linear space

Similar documents
THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 16, Number 2/2015, pp

Acta Scientiarum. Technology ISSN: Universidade Estadual de Maringá Brasil

Advances in Mathematics and Statistical Sciences. On Positive Definite Solution of the Nonlinear Matrix Equation

Some characterizations for Legendre curves in the 3-Dimensional Sasakian space

Using Difference Equations to Generalize Results for Periodic Nested Radicals

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

A Statistical Integral of Bohner Type. on Banach Space

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Some Properties of the K-Jacobsthal Lucas Sequence

Structure and Some Geometric Properties of Nakano Difference Sequence Space

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

Unified Mittag-Leffler Function and Extended Riemann-Liouville Fractional Derivative Operator

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

Conditional Convergence of Infinite Products

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Range Symmetric Matrices in Minkowski Space

Lecture 24: Observability and Constructibility

Lacunary Weak I-Statistical Convergence

On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

Counting Functions and Subsets

Taylor Transformations into G 2

= y and Normed Linear Spaces

Generalized Near Rough Probability. in Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

Positive solutions of singular (k,n-k) conjugate boundary value problem

Generalized Fibonacci-Lucas Sequence

MATH Midterm Solutions

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Lecture 6: October 16, 2017

Strong Result for Level Crossings of Random Polynomials

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

SHIFTED HARMONIC SUMS OF ORDER TWO

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

MATH /19: problems for supervision in week 08 SOLUTIONS

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

OPTIMAL ESTIMATORS FOR THE FINITE POPULATION PARAMETERS IN A SINGLE STAGE SAMPLING. Detailed Outline

On Almost Increasing Sequences For Generalized Absolute Summability

On ARMA(1,q) models with bounded and periodically correlated solutions

Modular Spaces Topology

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

Multivector Functions

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

THE ANALYTIC LARGE SIEVE

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

On composite conformal mapping of an annulus to a plane with two holes

Some Integral Mean Estimates for Polynomials

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

Congruences for sequences similar to Euler numbers

Complementary Dual Subfield Linear Codes Over Finite Fields

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

Proof of Analytic Extension Theorem for Zeta Function Using Abel Transformation and Euler Product

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

On randomly generated non-trivially intersecting hypergraphs

2012 GCE A Level H2 Maths Solution Paper Let x,

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

The Pigeonhole Principle 3.4 Binomial Coefficients

Lesson 5. Chapter 7. Wiener Filters. Bengt Mandersson. r x k We assume uncorrelated noise v(n). LTH. September 2010

Properties of Fuzzy Length on Fuzzy Set

Lower Bounds for Cover-Free Families

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

A two-sided Iterative Method for Solving

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Advanced Physical Geodesy

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Generalizations and analogues of the Nesbitt s inequality

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Second Order Fuzzy S-Hausdorff Spaces

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

Generalization of Horadam s Sequence

Chapter 8 Complex Numbers

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

The Discrete Fourier Transform

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

Σr2=0. Σ Br. Σ br. Σ r=0. br = Σ. Σa r-s b s (1.2) s=0. Σa r-s b s-t c t (1.3) t=0. cr = Σ. dr = Σ. Σa r-s b s-t c t-u d u (1.4) u =0.

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

Asymptotic Expansions of Legendre Wavelet

Applications of the Dirac Sequences in Electrodynamics

On Edge Regular Fuzzy Line Graphs

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Derivation of a Single-Step Hybrid Block Method with Generalized Two Off-Step Points for Solving Second Order Ordinary Differential Equation Directly.

COMMON FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN COMPLEX VALUED b-metric SPACES

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

Research Article The Peak of Noncentral Stirling Numbers of the First Kind

[Dhayabaran*, 5(1): January, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

Transcription:

Soglaaai J. Sci. Techol. 40 (3), 540-549, Ma - Ju. 2018 Oigial Aticle Geealized I -tatitical covegece i ituitioitic fuzz omed liea pace Nabaita Kowa ad Padip Debath* Depatmet of Mathematic, Noth Eate Regioal Ititute of Sciece ad Techolog, Nijuli, Auachal Padeh, 791109 Idia Received: 2 Novembe 2016; Revied: 4 Jaua 2017; Accepted: 8 Febua 2017 Abtact The otio of lacua ideal covegece i ituitioitic fuzz omed liea pace (IFNLS) wa itoduced i (Debath, 2012). A a cotiuatio of thi wo, i the peet pape, we itoduce ad tud the ew cocept of covegece i IFNLS. A aalogou poof of the ope poblem dicued above with epect to -tatitical -tatitical covegece i give. Alo, we ugget a ope poblem egadig the completee of the pace with epect to thi ew covegece, whoe poof could ope up a ew aea of eeach i oliea Fuctioal Aali i the ettig of IFNLS. Kewod: ituitioitic fuzz omed liea pace, -tatitical covegece, -covegece 1. Itoductio Zadeh (1965) itoduced the fuzz et theo i ode to model cetai ituatio whee data ae impecie o vague. Late, Ataaaov (1986) itoduced a o-tivial eteio of tadad fuzz et amel ituitioitic fuzz et which deal with both the degee of membehip (belogig-e) ad omembehip (o-belogige) fuctio of a elemet withi a et. Whe the ue of claical theoie bea dow i ome ituatio, fuzz topolog i coideed a oe of the mot impotat ad ueful tool fo dealig with impeciee. I *Coepodig autho Email adde: debath.padip@ahoo.com liea pace, if the iduced metic atifie the talatio ivaiace popet, a om ca be defied thee. B itoducig the om i uch pace we ca get a tuctue of the pace which i compatible with that metic o topolog ad thi eultig tuctue i called a omed liea pace. The idea of a fuzz om o a liea pace wa itoduced b Kataa (1984). Felbi (1992) itoduced a alteative idea of a fuzz om whoe aociated metic i of Kaleva ad Seiala (1984) tpe. Aothe otio of fuzz om o a liea pace wa give b Cheg-Modeo (1994) whoe aociated metic i that of Kamoil-Michale (1975) tpe. Agai, followig Cheg ad Modeo, Bag ad Samata (2003) itoduced aothe cocept of fuzz omed liea pace. I thi wa, thee ha bee a tematic developmet of fuzz omed liea pace

N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 541 (FNLS) ad oe of the impotat developmet ove FNLS i the otio of ituitioitic fuzz omed liea pace (IFNLS). With the help of fuzz om, Pa (2004) gave the otio of a ituitioitic fuzz metic pace. Uig the cocept of Pa (2004), agai Saadati ad Pa (2006) itoduced the otio of IFNLS. The cocept of tatitical covegece wa itoduced b Steihau (1951) ad Fat (1951) ad late o Fid (1985) developed the topic futhe. To tud the covegece poblem though the cocept of deit, the otio of tatitical covegece i a ve fuctioal tool. Koto et al. (2000) itoduced a geealized otio of tatitical covegece i.e. I-covegece, which i baed o the tuctue of the ideal I of famil of ubet of atual umbe N. Kaau et al. (2008) tudied tatitical covegece o IFNLS. Futhe, Koto et al. (2005) tudied ome of baic popetie of I-covegece ad defied eteal I-limit poit. Fo ome impotat ecet wo o ummabilit method ad geealized covegece we efe to Nabiev et al. (2007), Savaş ad Güdal (2014), Savaş ad Güdal (2015a), Savaş ad Güdal (2015b), Yamacı ad Güdal (2013). Kizmaz (1981) itoduced the otio of diffeece equece pace, whee the pace l, c( ), c0( ) wee tudied. Futhe, i 1995, the otio of diffeece equece pace wee geealized b Et ad Cola (1995) i l ( ), c( ), ( c ). 0 Agai Tipath ad Ei (2006) itoduced aothe tpe of geealizatio of diffeece equece pace i.e. l ( ), c( ), c ( ) 0. Afte thi, Tipath et al. (2005) geealized the above b itoducig the otio of diffeece a follow: let, be o-egative itege, the fo Z a give equece pace we have, = ( ) = { ( ) w :( 1 1 ) = Z( ) Z}, whee ad 0 fo all N, (hee ad thoughout the pape b N, we deote the et of atual umbe) which i equivalet to the biomial epeetatio : = v0 v v 1 v. I thi biomial epeetatio, if we tae = 1, we get the pace l ( ), pace ( ) pace l, c( ), ( ) 0 l, c( ), c ( ) c c( ), ( ) ; if we tae = 1, we get the c ad if we tae = = 1, we get the 0. With the help of thi ew geealized diffeece otio i.e. the otio geealized b Tipath et al. (2005), Dutta et al. (2014), itoduced a ew geealized fom of tatitical covegece i.e. -tatitical covegece fo eal umbe equece a follow: a equece ( ) i aid to be L X, if fo eve ϵ > 0 ad eve δ > 0, { N : 1 { : -tatiticall coveget to - L ϵ} δ} I. I the cuet pape we ue the above geealized otio of covegece of equece i ode to itoduce a ew geealized tatitical covegece called the -tatitical covegece o IFNLS ad eted the wo to obtai ome impotat eult. 2. Pelimiaie Fit we ecall ome eitig defiitio ad eample which ae elated to the peet wo. Defiitio 2.1 (Saadati & Pa, 2006) The 5-tuple (X, µ, ν,, ) i aid to be a IFNLS if X i a liea pace, i a cotiuou t-om, i a cotiuou t- coom ad μ, ν fuzz et o X (0, ) atifig the followig coditio fo eve, X ad, t > 0: (a) μ(, t) + μ(, t) 1, (b) μ(, t) > 0, (c) μ(, t) = 1 if ad ol if = 0, (d) μ(α, t) = μ(, t ) fo each α 0, α (e) μ(, t) μ(, ) μ( +, t + ), (f) μ(, t) : (0, ) [0, 1] i cotiuou i t,

542 N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 (g) lim t μ(, t)= 1 ad lim t 0 μ(, t)= 0, (h) ν(, t) < 1, (i) ν(, t) = 0 if ad ol if = 0, (j) ν(α, t) = ν(, t ) fo each α 0, α () ν(, t) ν(, ) ν( +, t + ), (l) ν(, t) : (0, ) [0, 1] i cotiuou i t, (m) lim t ν(, t) = 0 ad lim t ν(, t) = 1. I thi cae (μ, ν) i called a ituitioitic fuzz om. Whe o cofuio aie, a IFNLS will be deoted impl b X. Defiitio 2.2 (Saadati & Pa, 2006) Let (X, µ, ν,, ) be a IFNLS. A equece = {} i X i aid to be coveget to l ϵ X with epect to the ituitioitic fuzz om (μ, ν) if, fo eve α ϵ (0, 1) ad t > 0, thee eit 0 ϵ N, uch that μ( - l, t) > 1 α ad ν( - l, t) < α fo all 0. It i deoted b (μ, ν) - lim = l. Defiitio 2.3 (Saadati & Pa, 2006) Let (X, µ, ν,, ) be a IFNLS. A equece = {} i X i aid to be a Cauch equece with epect to the ituitioitic fuzz om (µ, ν) if, fo eve α (0, 1) ad t > 0, thee eit 0 N, uch that µ( m, t) > 1 α ad ν ( m, t) < α fo all, m 0. Defiitio 2.4 (Koto et al., 2000) If X i a o-empt et the a famil of et I P(X) i called a ideal i X if ad ol if (a) I, (b) A, B I implie A B I, (c) Fo each A I ad B A we have B I, whee P(X ) i the powe et of X. Defiitio 2.5 (Koto et al., 2000) If X i a o-empt et the a o-empt famil of et F P(X ) i called a filte o X if ad ol if (a) F, (b) A, B F implie A B F, (c) Fo each A F ad B A we have B F. A ideal I i called o-tivial if I ad X I. A otivial ideal I P(X) i called a admiible ideal i X if ad ol if it cotai all igleto, i.e., if it cotai {{}: X }. Defiitio 2.6 (Debath, 2012) Let (X, µ, ν,, ) be a IFNLS. Fo t > 0, we defie a ope ball B(,, t) with cete at X, adiu 0 < < 1 a B (,, t) = { X : µ(, t) > 1 ad ν(, t) < }. Defiitio 2.7 (Steihau, 1951) If K i a ubet of N, the et of atual umbe, the the atual deit of K, deoted b δ (K), i give b δ(k) = lim 1 { : K }, wheeve the limit eit, whee A deote the cadialit of the et A. Defiitio 2.8 (Kaau, 2008) Let (X, µ, ν,, ) be a IFNLS. A equece ( ) i X i aid to be tatiticall coveget to l X with epect to the ituitioitic fuzz om (μ, ν) if, fo eve ϵ >0 ad eve t >0, δ({ N, : µ( l, t) 1 ϵ o ν ( l, t) ϵ}) = 0. 3. Mai Reult I thi ectio we ae goig to dicu ou mai eult. Fit we defie ome impotat defiitio ad theoem o Defiitio 3.1 -tatiticall covegece. Let I 2 N ad let, be o-egative itege ad be the otio of diffeece equece. Let ( ) be a equece i a IFNLS (X, µ, ν,, ).The fo eve α (0, 1), ϵ > 0, δ > 0 ad t > 0, the equece ( ) i aid to be -tatiticall coveget to l X with epect to the ituitioitic fuzz om (µ, ν) if, we have

N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 543 { N : 1 { : if {t > 0 : µ( ( l, t) α} ϵ} δ} I. Hee l i called the wite S(I, Eample 3.2 ) lim = l. - limit of the equece l, t) 1 α o ν ( ) ad we Coide the pace of all eal umbe with the uual om i.e. (R, ) ad let fo all a, b [0, 1], a b = ab ad a b = mi{a + b, 1}. Fo all R ad eve t > 0, let t t, ad t, t. The (R, µ, ν,, ) i a t IFNLS. We coide I = {A N: δ(a) = 0}, whee δ(a) deote atual deit of the et A, the I i a o-tivial admiible ideal. Defie a equece ( ) ={, if = i2, i N 0, ele. a follow: The fo eve α (0, 1), ϵ > 0, δ > 0 ad fo a t > 0, the et K (α, t) = { N: 1 { : if {t > 0 : µ( o ν( l, t) 1α l, t) α} ϵ} δ} I will be a fiite et. Sice α > 0 i fied, whe become ufficietl lage, the quatit µ( quatit ν(, t) become geate tha 1 α (ad imilal, the, t) become le tha α). Hece δ(k(α, t)) = 0, ad coequetl, K(α, t) I, i.e. S(I, ) lim = 0. (a) S( I, ) lim l, (b) { N : 1 { : if {t > 0 : µ( α} ϵ} δ} ad { N : 1 { : if {t > 0 : ν( α} ϵ} δ} I, (c) { N : 1 { : if {t > 0 : μ( l, t) 1 l, t) l, t) > 1- α ad ν( l, t) < α } < ϵ } < δ} F(I ), (d) { N : 1 { : if {t > 0 : μ( α} < ϵ} < δ} F(I ) ad { N : 1 { : if {t > 0 : ν( α} < ϵ } < δ} F(I ), (e) lim ( l, t) 1 ad lim ( l, t) 0. l, t) > 1- l, t) < Poof of the followig ca be obtaied uig imila techique a i (Debath, 2012). Theoem 3.4 Let ( ) be a equece i a IFNLS (X, µ, ν,, ). If the equece ( ) i -tatiticall coveget to l X with epect to the ituitioitic fuzz om (µ, ν), the S(I, ) lim i uique. Agai, ( 0, t) ={ t t, if = i 2, i N 1, ele. The lim (, t) doe ot eit ad coequetl the equece { } i ot coveget with epect to the ituitioitic fuzz om (, ). Lemma 3.3 Let ( ) be a equece i a IFNLS (X, µ, ν,, Theoem 3.5 Let =( ) be a equece i a IFNLS (X, µ, ν,, ). If (µ, ν )lim = l, the S (I, ) lim = l. Poof. Let u coide (µ, ν) lim = l. The fo α (0, 1), t > 0, ϵ > 0 ad δ > 0, thee eit 0 N uch that fo all 0. µ( l, t) > 1 α ad v( l, t) < α, Theefoe, fo all 0 the et, ). The fo eve α (0, 1), > 0, δ > 0 ad t > 0 the followig tatemet ae equivalet:

544 N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 { N : if {t > 0 : µ( l, t) 1 α o ν ( l, t) α} ϵ} ha at mot fiitel ma tem. Thu it follow that, α o ν ( { N : 1 { : if {t > 0 : µ( Theoem 3.6 l, t) α} ϵ} δ} I. Thu S(I, Let =( ) lim = l., ). If S(µ,ν ) lim =l, the S(I, l, t) 1 ) be a equece i a IFNLS (X, µ, ν, ) lim =l. Poof. Let S(µ,ν) lim = l. The α (0, 1), t > 0, ϵ > 0 ad δ > 0 thee eit 0 N uch that = 0, fo all 0. δ ({ N : µ( l, t) 1 α o ν ( l, t) α}) Thi implie, δ ({ N : µ( α}) = 0, fo all 0. α o ν( So we have, l, t) 1 α o ν( { N : 1 { : if {t > 0 : µ( Theoem 3.7 l, t) α} ϵ } δ} I. Thu S (I, ) lim = l. l, t) l, t) 1 Theoem 3.8 Let = ( ) be a equece i a IFNLS (X, µ, ν,, ). Let I be a o-tivial ideal of N. If =( tatiticall covegece i X ad = ( X uch that { N : i alo ) i a ) i a equece i, fo ome } I, the -tatiticall covegece to the ame limit. Poof. Let α (0, 1), t > 0 ad S(I, α} ϵ } δ} I. { N : 1 { : if {t > 0 : µ( Now, { N : 1 { : if {t > 0 : µ( α} ϵ } δ} { N : N : 1 { : if {t > 0 : µ( ) lim = l. The - l, t) 1 l, t) 1, fo ome } { l, t) 1α} ϵ} δ}. But both the et i the ight-had ide of the above icluio elatio belog to I. Thu { N : 1 α} ϵ } δ} I. ϵ } δ} I. limit. { : if {t > 0 : µ( Similal, we ca pove that { N : 1 Theefoe S (I, Hece i { : if {t > 0 : v( ) lim = l. l, t) 1 l, t) α} -tatiticall coveget to the ame Let = ( ) be a equece i a IFNLS (X, µ, ν,, ). The S(I, ) lim = l if ad ol if thee eit a iceaig ide equece K={} of atual umbe uch that fo K ad α (0, 1), α ad ν ( lim K = l. { N : 1 { : if {t > 0 : µ( l, t) > 1 l, t) < α} < ϵ } < δ} F (I) ad (µ, ν ) 4. - Covegece i IFNLS Hee we ae goig to peet the cocept of - covegece i IFNLS ad etablih it elatio with covegece. I -

N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 545 Defiitio 4.1 Let = ( ) be a equece i a IFNLS (X, µ, ν,, Fom the followig theoem we ca coclude that - covegece i toge tha I -covegece. ). The = ( ) i aid to be -coveget to l X with epect to the ituitioitic fuzz om (µ, ν) if, fo eve t > 0, α (0, 1), ϵ > 0 ad N we have, Theoem 4.2 { : if {t > 0 : µ( l, t) > 1 α ad ν( l, t) < α} < ϵ }. It i deoted b (µ, ν) lim = l. Let = { ). The (µ, ν) lim i uique, if = { } be a equece i a IFNLS (X, µ, ν,, with epect to the ituitioitic fuzz om (µ, ν ). } i -coveget Poof. Let u coide (µ, ν) lim = l1 ad (µ, ν) lim = l2 (l1 l2 ). Tae a fied α (0, 1), fo which we chooe γ (0, 1) uch that (1 γ ) (1 γ ) > 1 α ad γ γ < α. Now, fo eve t > 0, ϵ > 0, N, we have, ( ( {1 : if {t > 0 : µ( l1, t) < α} < ϵ. Ad {2 : if {t > 0 : µ( l2, t) < α} < ϵ. l1, t) > 1 α ad ν l2, t) > 1 α ad ν Coide = ma {1, 2}. The fo, we will get a p N uch that p µ( p l1, t 2 ) > µ( l2, t ) > µ( l2, t ) > 1 γ. 2 2 Thu we have l1, t ) > 1 γ ad µ( 2 µ(l1 l2, t) µ( p l1, t ) µ( 2 p l2, t ) 2 > (1 γ) (1 γ) > 1 α. Sice α > 0 i abita, we have µ(l1l2, t) = 1 fo all t > 0, which implie that l1 = l2. Similal we ca how that, v(l1l2, t) < α, fo all t > 0 ad abita α > 0, ad thu l1 = l2. Hece (µ, ν) lim i uique. Theoem 4.3 Let = ( ν,, ). If (µ, ν) lim = l, the ) be a equece i a IFNLS (X, µ, lim = l. Poof. Let u coide (µ, ν) lim = l. The fo eve t > 0, α (0, 1) ad ϵ > 0 we have { : if {t > 0 : µ( ( l, t) < α} < ϵ }. α ad ν( Implie, fo eve δ > 0, { N : 1 { : if {t > 0 : µ( 1 α o ν( lim = l. l, t) < α} < ϵ } < δ}. So, we have, l, t) > 1 α ad ν A = { N : 1 { : if {t > 0 : µ( Theoem 4.4 l, t) > 1 l, t) α} ϵ } δ} {1, 2,..., 1}. A I beig admiible, o we have A I. Hece Let ={ l, t) } be a equece i a IFNLS (X, µ, ν,, ). If (µ, ν ) lim = l, the thee eit a ubequece { m } of =( ) uch that (µ, ν) lim = l. Poof. Let u coide (µ, ν) lim = l. The fo eve t > 0, α (0, 1), ϵ > 0 ad N we have { : if {t > 0 : µ( l, t) > 1 α ad ν( l, t) < α} < ϵ }. Cleal, we ca elect a m uch that µ( m l, t) > µ( l, t) > 1 α ad ν( m l, t) < ν( l, t) < α. It follow that (µ, ν) lim m m = l.

546 N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 Theoem 4.5 Let I be a otivial ideal of N ad = ( equece i a IFNLS (X, µ, ν,, ). If ={ coveget i X ad ={ ) be a } i - } i a equece i X uch Defiitio 5.1 ). The = ( Let = ( ) be a equece i a IFNLS (X, µ, ν,, ) i aid to be -Cauch equece with epect to the ituitioitic fuzz om (µ, ν) if, that { N : fo ome } I, the i alo fo eve t > 0, α (0, 1), ϵ > 0, thee eit 0, m N with m -coveget to the ame limit. Poof. Let u coide that = ( Fo α (0, 1), t > 0 ad ϵ > 0 we have, { : if {t > 0 : µ( ) i -covegece i X. l, t) > 1 α ad atifig, ( { : if {t > 0 : µ( m, t) < α} < ϵ}. m,t) > 1 α ad ν ν( l, t) < α} < ϵ}. Thi implie, fo all δ > 0, { N : 1 { : if {t > 0 : µ( l, t) > 1 Defiitio 5.2 Let = ( ). The = ( ) be a equece i a IFNLS (X, µ, ν,, ) i aid to be -tatiticall Cauch α ad ν( ad ν( o ν( l, t) < α} < ϵ } < δ}i. Thi implie, { N : 1 { : if {t > 0 : µ( l, t) α} ϵ } δ} I. Theefoe, we have { N : 1 { : if {t > 0 : µ( l, t) α} ϵ } δ} { N : fo ome } { N : 1 { : if {t > 0 : µ( 1 α o ν( l, t) α} ϵ } δ}. l, t) 1 α l, t) 1 ε, l, t) A both the ight-had ide membe of the above equatio ae i I, theefoe we have, { N : 1 { : if {t > 0 : µ( α o ν ( l, t) α} ϵ } δ} I. Hece i -covegece at the ame limit. l, t) 1 equece with epect to the ituitioitic fuzz om (µ, ν) if, fo eve t > 0, ϵ > 0, δ > 0 ad α (0, 1) thee eit m N atifig, 1α ad ν( { N : 1 { : if {t > 0 : µ( Defiitio 5.3 Let = ( ). The = ( m, t) < α} < ϵ} < δ} F (I). m, t) > ) be a equece i a IFNLS (X, µ, ν,, ) i aid to be * I -tatiticall Cauch equece with epect to the ituitioitic fuzz om (µ, ν) if, thee eit a et M ={m1 < m2 <... < m <...} N uch that the et M = { N : m } F (I) ad the ubequece ( m ) of = ( ituitioitic fuzz om (µ, ν). ) i a Cauch equece with epect to the 5. called -Statiticall Cauch Sequece i IFNLS Hee we itoduce a ew fom of Cauch equece -tatiticall Cauch equece ad fid ome eult. Theoem 5.4 Let = ( ). If = ( ) i ) be a equece i a IFNLS (X, µ, ν,,

N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 547 -tatiticall coveget with epect to the ituitioitic fuzz om (µ, ν), the it i -tatiticall Cauch with epect to the ituitioitic fuzz om (µ, ν). Poof. Suppoe that = ( ) be a -tatiticall coveget equece which covege to l. Fo a give α > 0, chooe γ > 0 uch that (1 γ ) (1 γ ) > 1 α ad γ γ < α. The fo a t > 0, ϵ > 0 ad δ > 0, we have, Kµ (γ, t) = { N : 1 { : if {t > 0 : µ( l, t ) > 1 γ } < ϵ} < δ} 2 ad t 2 Kν (γ, t) = { N : 1 { : if {t > 0 : ν( l, ) < γ} < ϵ} < δ}. The Kµ (γ, t) F (I ) ad Kν (γ, t) F (I ). Let K (γ, t) = Kµ (γ, t) Kν (γ, t). The K (γ, t) F (I ). If K (γ, t) ad we chooe a fied m K (γ, t), the µ( which implie, < δ. m,t) µ( l, t 2 ) µ( > (1 γ) (1 γ) > 1 α. Thi cleal implie that if {t > 0 : µ( 1 { : if {t > 0 : µ( Alo, ν( Thi implie that, m, t) > 1 α} < ϵ. m m l, t 2 ), t) > 1 α} < ϵ} m, t) ν( l, t ) ν( l, t ) 2 2 < γ γ < α. if {t > 0 : ν( m, t) < α} < ϵ, which agai implie, < δ. 1 { : if {t > 0 : ν( m, t) < α} < ϵ} m 1α ad ν( Rema 5.5 Theefoe { N : 1 { : if {t > 0 : µ( m Hece = ( ) i, t) < α} < ϵ} < δ} F(I). -tatiticall Cauch. m, t) > Thi till emai a ope poblem if the covee of Theoem 6.4 i tue, i.e., whethe eve Cauch equece i -tatiticall -tatiticall coveget (o it become -tatiticall coveget ude cetai ew coditio). The completee of IFNLS with epect to ome otio of covegece would help the eeache to ivetigate ma aalogou eult of claical Fuctioal Aali ad Fied Poit Theo i the ettig of a IFNLS. 6. Cocluio I thi pape we have itoduced the cocept of tatiticall covegece i IFNLS ad etablihed ome ew eult. The eteded eult give u a ew idea about tatitical covegece i IFNLS. A ew tpe of Cauch equece i.e. - Cauch equece ha alo bee itoduced i thi pape. Some eitig eult ae geealized a well a eteded ad ome ew eult ae icopoated. The eult obtaied i thi pape ae moe geeal tha the coepodig eult fo claical ad fuzz omed pace. The covee of Theoem 6.4 would be a ve good topic fo futue tud, becaue if the covee ca be poved to be tue, the the IFNLS become -tatiticall complete. A - -tatiticall complete IFNLS would, i tu, ope up a ew aea of eeach o fied poit theo ad oliea fuctioal aali i it.

548 N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 Acowledgemet The autho ae etemel gateful to the aomou leaed efeee() fo thei ee eadig, valuable uggetio ad cotuctive commet fo the impovemet of the maucipt. The autho ae thaful to the edito() of Soglaaai Joual of Sciece ad Techolog. Refeece Ataaov, K. T. (1986). Ituitioitic fuzz et. Fuzz Set ad Stem, 20, 87-96. Bag, T., & Samata, S. K. (2003). Fiite dimeioal fuzz omed liea pace. Joual of Fuzz Mathematic, 11(3), 687-705. Cheg, S. C., & Modeo, J. N. (1994). Fuzz liea opeato ad fuzz omed liea pace. Bulleti of the Calcutta Mathematical Societ. 86, 429-436. Debath, P. (2012). Lacua ideal covegece i ituittioitic fuzz omed liea pace. Compute ad Mathematic with Applicatio, 63, 708-715. Dutta, H., Redd, B. S., & Jebil, I. H. (2014). O two ew tpe of tatitical covegece ad a ummabilit method. Acta Scietiaum Techolog, 36, 135-139. Et, M., & Cola, R. (1995). O geealized diffeece equece pace. Soochow Joual of Mathematic, 21, 377-386. Fat, H. (1951). Su la covegece tatitique. Colloquium Mathematicum, 2, 241-244. Felbi, C. (1992). Fiite dimeioal fuzz omed liea pace. Fuzz Set ad Stem, 48, 239-248. Fid, J. A. (1985). O tatitical covegece. Aali, 5, 301-313. Kaleva, O., & Seiala, S. (1984). O fuzz metic pace. Fuzz Set ad Stem, 12, 215-229. Kaau, S., Demici, K., & Duma, O. (2008). Statitical covegece o ituitioitic fuzz omed pace. Chao Solito ad Factal, 35, 763-769. Kataa, A. K. (1984). Fuzz topological vecto pace. Fuzz Set ad Stem, 12, 143-154. Kizmaz, H. (1981). O cetai equece pace. Caadia Mathematical Bulleti, 24, 169-176. Komoil, I., & Michale, J. (1975). Fuzz metic ad tatitical metic pace. Kbeetica, 11, 326-334. Koto, P., Macaj, M., Salat, T., & Slezia, M. (2005). I- covegece ad etemal I-limit poit. Mathematica Slovaca, 55, 443-464. Koto, P., Salat, T., & Wilczi, W. (2000). I-covegece. Real Aali Echage, 26, 669-686. Nabiev, A., Pehliva, S., & Güdal, M. (2007). O I-Cauch equece. Taiwaee Joual of Mathematic, 11 (2), 569-566. Pa, J. H. (2004). Ituitioitic fuzz metic pace. Chao Solito ad Factal, 22, 1039-1046. Saadati, R., & Pa, J. H. (2006). O the ituitioitic fuzz topological pace. Chao Solito ad Factal. 27, 331-344. Savaş E., & Güdal M. (2014). Cetai ummabilit method i ituitioitic fuzz omed pace. Joual of Itelliget ad Fuzz Stem, 27(4), 1621-1629. Savaş, E., & Güdal, M. (2015a). I-tatitical covegece i pobabilitic omed pace, Scietific Bulleti- Seie A Applied Mathematic ad Phic, 77(4), 195-204. Savaş, E., & Güdal, M. (2015b). A geealized tatitical covegece i ituitioitic fuzz omed pace. ScieceAia, 41, 289-294. Steihau, H. (1951). Su la covegece odiaie et la covegece amptotique. Colloquium Mathematicum, 2, 73-74. Tipath, B. C., & Ei, A. (2006). A ew tpe of diffeece equece pace. Iteatioal Joual of Sciece ad Techolog, 1, 11-14. Tipath, B. C., Ei, A., & Tipath, B. K. (2005). O a ew tpe of geealized diffeece Ceáo equece pace. Soochow Joual of Mathematic, 31, 333-340.

N. Kowa & P. Debath / Soglaaai J. Sci. Techol. 40 (3), 540-549, 2018 549 Yamacı, U., & Güdal, M. (2013). O lacua ideal covegece i adom 2-omed pace. Joual of Mathematic, 2013, Aticle ID 868457. Zadeh, L. A. (1965). Fuzz et. Ifomatio ad Cotol, 8, 338-353.