Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Similar documents
Czechoslovak Mathematical Journal

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

Časopis pro pěstování matematiky

Acta Mathematica et Informatica Universitatis Ostraviensis

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Časopis pro pěstování matematiky

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Časopis pro pěstování matematiky

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Mathematica Bohemica

Časopis pro pěstování matematiky

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Czechoslovak Mathematical Journal

Acta Mathematica Universitatis Ostraviensis

Aktuárské vědy. D. P. Misra More Multiplicity in the Rate of Interest; Poly-party and Poly-creditor Transactions. II

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

Mathematica Bohemica

Archivum Mathematicum

Acta Universitatis Carolinae. Mathematica et Physica

Commentationes Mathematicae Universitatis Carolinae

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Archivum Mathematicum

Kybernetika. Harish C. Taneja; R. K. Tuteja Characterization of a quantitative-qualitative measure of inaccuracy

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

Časopis pro pěstování matematiky a fysiky

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Mathematica Bohemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Commentationes Mathematicae Universitatis Carolinae

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Czechoslovak Mathematical Journal

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Kybernetika. Nand Lal Aggarwal; Claude-François Picard Functional equations and information measures with preference

Kybernetika. Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance

Czechoslovak Mathematical Journal

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Czechoslovak Mathematical Journal

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS

Toposym 2. Miroslav Katětov Convergence structures. Terms of use:

Entropy measures of physics via complexity

Linear Differential Transformations of the Second Order

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Kybernetika. Šarūnas Raudys Intrinsic dimensionality and small sample properties of classifiers

Acta Universitatis Carolinae. Mathematica et Physica

Časopis pro pěstování matematiky a fysiky

2.2 Some Consequences of the Completeness Axiom

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Applications of Mathematics

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Algebraic matroids are almost entropic

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers

Archivum Mathematicum

Časopis pro pěstování matematiky a fysiky

Introduction and Preliminaries

Kybernetika. Ivan Kramosil Three semantical interpretations of a statistical theoremhood testing procedure

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Chapter 4. Measure Theory. 1. Measure Spaces

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES

Applications of Mathematics

CONSERVATION by Harvey M. Friedman September 24, 1999

Kybernetika. Daniel Reidenbach; Markus L. Schmid Automata with modulo counters and nondeterministic counter bounds

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

A Note on the 2 F 1 Hypergeometric Function

The Fundamental Theorem of Arithmetic

Commentationes Mathematicae Universitatis Carolinae

ON HOW TO CONSTRUCT LEFT SEMIMODULES FROM THE RIGHT ONES

Acta Universitatis Carolinae. Mathematica et Physica

A SYSTEM OF AXIOMATIC SET THEORY PART VI 62

PERIODICITY OF SOME RECURRENCE SEQUENCES MODULO M

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

Acta Universitatis Carolinae. Mathematica et Physica

5 Set Operations, Functions, and Counting

STRICTLY ERGODIC PATTERNS AND ENTROPY FOR INTERVAL MAPS

PANM 17. Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D

Jónsson posets and unary Jónsson algebras

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

Mathematica Bohemica

Kybernetika. István Berkes; Lajos Horváth Approximations for the maximum of stochastic processes with drift

THE PRODUCT OF A LINDELÖF SPACE WITH THE SPACE OF IRRATIONALS UNDER MARTIN'S AXIOM

Czechoslovak Mathematical Journal

Transcription:

Kybernetika Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy Kybernetika, Vol. 3 (1967), No. 1, (30)--35 Persistent URL: http://dml.cz/dmlcz/125526 Terms of use: Institute of Information Theory and Automation AS CR, 1967 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

KYBERNETIKA ČÍSLO I, ROČNÍK 3/1967 Quantification Method of Classification Processes Concept of Structural «-Entropy JAN HAVRDA, FRANTISEK CHARVÂT The aim of this paper is to form a quantificatory theory of classifi;atory processes. A concept of structural o-entropy is defined and its form is derived. Definition 1. Let B be a non-empty set with a normed measure (it is a measure defined on the set of all subsets of B such that the measure of B is 1). Let {Jf v } vej t be an indexed set of finite families Jf v of propositional functions on B (c " v = = {"/>!,..., v p Nv}, where N v is a positive integer) such that Nv U M,(JT V ) = B, M,(jr v ) n Mj(.r v ) = 0 for i 4= j, /,./' = 1, 2,..., /V v, and for every v e J where M f(jf v) = {x : x e B and v p t(x) holds}. The family {Mj(3f v)}" v the set B, and the family Jf' are said classification, base of classification, and classificatory criteria, respectively. In the sequel we will denote the classification only by M(B) = {M,}* because we shall not distinguish among classificatory criteria. Let us discuss Definition I in more detail: the classification was defined on the sets with normed measure and, conseqnetly, we have simultaneously introduced a quantification of the base of classification. However, it is purposeful to quantificative the classifications of given base. According to this purpose we shall give some formal considerations and denotations: every element of 01(B) we call element of classification: every element M t e M(B) has a measure n(m t), i = 1,..., N. The measures n(m-) will serve here as foundation means for quantification of classification and therefore we shall write the classification in the sequel as?a(b) = {M lt..., M N, fi,,..., fi N}, where /*,- = = KM f ). In this paper we introduce axiomatically a real function of classifications, so called structural a-entropy, which can serve as a quantitative measure of classification. It will be shown, that there is an analogy between a-entropy and the usual entropy from information theory.

Definition 2. Let.J#(B) = {M..., M N, /i p N \ be a classirtcation. A function S(//... /. v ; a) will be said structural a-entropy if?! a) S(//, p N ; a) is continuous in the region /(,- >. 0, //,- = 1, a > 0; b) S(l;a) = 0, S(i, i; a) = 1; c ) S(/t, Ui-i,0, //, +,,...,// ; a) = S(//...,//,_ /*,+, // N ; a) for every / = 1,2,..., N ; d) S(//, //,_,, V,,, v,,,//,+! // N ; a) = S(//...,//,_ //,, //,+,,... /( ; a) + + a//"s ( -", ; a ) for every v,, + v, 3 = //,- > 0, /' = 1.2 A', a > 0. V/',' A', ) The meaning of axioms a) c) is clear. What concerns axiom d), an increase of the structural a-entropy provided that the classification is "refined" depends on the parameter a which will be said characteristic parameter. Theorem 1. Axioms a) d) determine the structural a-entropy by -ya - 1 -V S(//... //, v ; a) = (1 YJ /'/) f r a > 0, a + 1, ; = I unambiguously N S(//...,n N ; 1) = - >,log//,, where log is here and in the sequel taken to the base 2. Proof of this theorem will be based on the following lemmas: Lemma 1. a = 1. Proof. According to d) i= i S(i,i;a) = S(l;a) + as(j, i; a), which immediately implies the desired assertion (cf. b)). Lemma 2. // v k > 0, k 1,..., m, v k = //, > 0, then «r = l S(//...,//, v,,..., v /.,+...,n N ; a) = S(/.... // ; a) + //-S)- 1,..., ; a \. \lh I'i J Proof. To prove this Lemma we argue by induction. For ir. = 2 the desired statement holds (cf. d) and Lemma 1). Using Lemma 1, d) and the induction premise we obtain the following result

S(/í t,..., //,--,, v,,..., v, n+1, /. í+,,..., џ N ; a) = = S(/í,,...,//,_!, v,, ß, /(,+,,...,%; я) + > [ -i,. PД;< + /?svf ^ -;-L VJ" /* / where /7 = v 2 +... + v, + 1. One more application of the induction premise yields S fa,..., -^-L ;a) = S fa,jl;a) + fa) S fa,..., ^ ; a V/'; Mi / V/',' /L / V/',7 V^ /* and hence, in view of the preceding equality, the statement of Lemma 2 holds. The following Lemma is an obvious consequence of Lemma 2. //7C/7 Lemma 3. If v,j >. 0, / = 1,2,..., m ;, v ;j- = // ; > 0, i = 1,2 n, //, = 1, j=i S(v lt,..., v lmi,..., v nl....,. ; a) = = S(/(,,... /( ; a) + /(; 5 (-'',..., --" ; a '=1 V/', /',- If we replace in Lemma 3 m ( by m and v (j- by ijmn, i = 1, //, / = 1,2,..., m, where m and n are positive integers, then we obtain the following Lemma 4. If F(n, a) = S [,,..., ; a ), then \n n n F(mn, a) = F(m, a) H - F(n, a) = F(n, a) + F(m, a), m" ' n" ~~' for every positive integers m, n. This equality implies Lemma 5. If a + 1, then F(n, a) = c(o)(l - \jn"^'), where c(a) is a function of the characteristic parameter. The tools are now at hand to prove Theorem 1. If n and r' :s are positive integers, /, = n and if we put //:, = r,jn, i = 1, 2,..., m, then an application of Lemma 3 i= 1 gives s(- -,..., -,..., -,...,-; a) = %...,// ; a) + ftfsfl,...,-;ay \n «n n / i = i V r, r, / i=i

F(n,a)-S(n l,..., tx m;a) + _:fi'!f(r t,a) i=l this together with Lemma 5 for a 4= 1 implies that S(ftt V, n ;a)-c(a)(\ - \\n--')-t^c(a)({ - l/-r') = i= 1 = c(a)(1 -trf)- In view of axiom a), the later equality holds also for irrational /(Js. Using axiom b) we get 2«-i c(a) =. That is, for a 4= 1 we have obtained the desired result The equality s(n 2«-i n N ; a) = T^r~-'-( l - I!/*")- %i,..., n N \ 1) = - X>»log,u i i= i is a consequence of the fact that the structural a-entropy is a continuous function of a. Remark. It is to be noted that the validity of Theorem 1 does not depend ultimately on the assumption of continuity of S in variable a. If this continuity is not required, the proof of Theorem 1 remains unaltered if a 4= 1 and for a = 1 it can be modified by means of results of [1]. Consequently, the requirement of the continuity mentioned above is not necessary (cf. axiom a)). In the sequel we list some basic properties of the structural a-entropy. N Theorem 2. S(/^x,..., (i N; a) is in the region /<,- 2: 0, i = 1, 2,..., N, _] \i t 1 concave function achieving maximum for /i t = 1/iV, i = 1, 2,..., N. Proof. Concavity follows from the fact that the matrix of second derivatives of S(/i t,..., n N; a) is in the given region negative semidefinite. The proof of the second assertion will be given in the following two steps: 1. Suppose first that a 4= 1. As (2"~ i. x")/(2 ~' - 1) is for 0 _ x _ 1 convex fucntion, we can write for n t under consideration 2'-' /" 1 V' 2-' " 1. v N /= I which yields the desired result.

2. Let now a = I. As x log x is for 0 :S x ^ 1 convex function, we can write - /.,) log ( - /i,) = - /., log /(, ;=i JV / \;=t /V / i=i N and the conclusion of the proof is clear. The following property of the structural a-entropy seems to be useful for applications: ;V Theorem 3. // Hj = 0, j = 1,..., N, /._, = 1, //,_, < /., /or i = 2,,.., N and if 0 < e < (ju,. - /ii_i)/2, //iew S(// t,.../ijvja) < S(pi,...,/.,-_, + s, M ; - e,.../.jyj a). Proof. This Theorem obviously follows from Theorem 2. In closing this paper let us note that the normed measure used in our considerations does not need to be interpreted as a probability measure. The structural a-entropy may be considered as a new generalization of the Shannon's entropy which differs from the generalization given by Renyi [2]. The authors thank for advices and suggestions given to them by Dr. Perez at the consultation about this paper. (Received June 6th, 1966.) REFERENCES [1] Д. K. Фaдeeв: K пoнятию энтpoпии кoнeчнoй вepoятнocrнoй cxeмы. Уcnexи мaт. нayк // (1956), JЧs 1. [2] A. Rényi: Wahrscheinlichkeitsrechnung min einen Anhang über Informationstheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1962.

Kvantifikační metoda klasifikačních Pojem strukturální a-entropie procesů JAN HAVRDA, FRANTIŠEK CHARVÁT Práce je věnována vytvoření jisté kvantifikační metody klasifikačních procesů, přičemž pojem klasifikace je zaveden v definici 1. Problém kvantifikace klasifikace spočívá v axiomatickém zavedení jisté funkce, tzv. strukturální a-entropie na množině všech klasifikací dané množiny s normovanou mírou. Axiomatické zavedení strukturální a-entropie uvedeným způsobem vede k jednoznačnému určení tvaru strukturální a-entropie. Dále jsou uvedeny základní vlastnosti strukturální a-entropie a ukázána možnost pravděpodobnostní interpretace získaných výsledků, která vede k jistému zobecnění Shannonovy entropie. Jan Havrda, František Charvát, Katedra matematiky elektrotechnické fakulty ČVUT, Praha 6, Technická 2/1902.