University of Toronto. Final Exam

Similar documents
ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

6.012 Electronic Devices and Circuits Spring 2005

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Advanced Current Mirrors and Opamps

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

University of Toronto. Final Exam

Homework Assignment 08

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Lecture 37: Frequency response. Context

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Homework Assignment 09

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

55:041 Electronic Circuits The University of Iowa Fall Final Exam

EECS 105: FALL 06 FINAL

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Electronics II. Final Examination

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

ECE 546 Lecture 11 MOS Amplifiers

Electronics II. Final Examination

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

CE/CS Amplifier Response at High Frequencies

ELEN 610 Data Converters

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Systematic Design of Operational Amplifiers

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Chapter 4 Field-Effect Transistors

Biasing the CE Amplifier

Chapter 10 Feedback. PART C: Stability and Compensation

Lecture 28 Field-Effect Transistors

Chapter 13 Small-Signal Modeling and Linear Amplification

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 090 Multiple Stage Frequency Response - I (1/17/02) Page 090-1

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

ECE 6412, Spring Final Exam Page 1

55:041 Electronic Circuits The University of Iowa Fall Exam 2

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Stability of Operational amplifiers

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor Theory

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Sample-and-Holds David Johns and Ken Martin University of Toronto

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Electronic Circuits Summary

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Circle the one best answer for each question. Five points per question.

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Integrated Circuit Operational Amplifiers

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Amplifiers, Source followers & Cascodes

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

ECE 342 Electronic Circuits. 3. MOS Transistors

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Stability and Frequency Compensation

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

ECEN 326 Electronic Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EECS 141: FALL 05 MIDTERM 1

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ESE319 Introduction to Microelectronics. Feedback Basics

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

CMOS Analog Circuits

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Electronics II. Midterm II

Electronics II. Midterm #2

ECE 342 Solid State Devices & Circuits 4. CMOS

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM.

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

6.2 INTRODUCTION TO OP AMPS

ECEN 326 Electronic Circuits

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

ECE321 Electronics I

ESE319 Introduction to Microelectronics. Feedback Basics

Homework Assignment 11

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Refinements to Incremental Transistor Model

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

EE105 Fall 2014 Microelectronic Devices and Circuits

Chapter7. FET Biasing

Design of Analog Integrated Circuits

Transcription:

University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last page of test.. Unless otherwise stated, use transistor parameters on equation sheet and assume g m r o» 1. 3. Non-programmable calculator allowed; No other aids allowed 4. Grading indicated by [ ]. Attempt all questions since a blank answer will certainly get 0. Question Mark 1 3 First Name: Student #: 4 5 6 Total (max grade 36) page 1 of 10

[6] Question 1: Consider the circuit below where all transistors are in the active region. The numbers beside the transistors indicate the transistor width (in µm ). v s R S 10kΩ 0µA 1 V DD 8 3V All L 0.18µm v o a) Find the small-signal gain v o v s v o v s b) Estimate the 3db frequency cutoff, f 3dB. For C db values assume V db 0. f 3dB page of 10

[6] Question : 3µ n V ov a) For a Mosfet transistor, show that f t ----------------- assuming and the overlap com- 4πL C gs» C gd ponent of C gs is negligibly small. b) Consider the circuit below, only consider the capacitors and. C gs C gd R S v 1 V DD R D 50k v o for each transistor 1 ma/v g m C gs C gd 1 pf r o v s 00k Find the pole due to the node and also find the pole due to the node. v 1 V SS v o ω p1 ω p page 3 of 10

[6] Question 3: Consider the transistor below where it is biased such that V ov 0.V. Including the effects of C gs and C gd, find the frequency, f 45, where the impedance has a phase angle of 45 (in Hz). Ignore. Z i () s r o V ov 0.V W 3um L 0.3um r o f 45 page 4 of 10

[6] Question 4: Consider the circuit shown below. V g DD m1 g m 100uA/V A cl v O i S r o1 r o 100k 100k R in R f M R f v O Hint: transconductance gm1 is parallel to gm i S M 1 R out a) Find L, A and d. L A d page 5 of 10

b) Find v o i s, R in and R out. v o i s R in R out page 6 of 10

[6] Question 5: Assume the loop gain for a feedback system is found to be the following. Ls () 5 10 4 ----------------------------------------------------------------------------------------- where ω,,. ( 1 + s ω p1 )( 1 + s ω p )( 1 + s ω p3 ) p1 10 1 ω p 10 6 ω p3 10 9 a) Sketch the Bode plot for the above loop gain (both mag and phase) Mag Phase page 7 of 10

b) Estimate the phase-margin (PM) for the above loop gain. Hint, the unity gain freq is much greater than and much less than. ω p1 ω p3 PM c) Estimate the time-constant for the settling behaviour of this feedback system (assuming it can be modeled as a first-order system). τ page 8 of 10

[6] Question 6: Consider a class AB BJT output stage shown below. Assume transistors and Q p are matched with I s 10 13 A, β is large, and the output is sinusoidal with a maximum amplitude of 10V. +1V Assume V T 5mV Q n v S V BB Q n Q p v O R L 50 1V V BB a) Find the value of such that the quiescent current is 5% of the maximum load current. V BB b) For an output voltage of -5V, estimate i n, i p, and v S. i n i p v S page 9 of 10

Analog Electronics Equation Sheet Constants: k 1.38 10 3 JK 1 ; q 1.60 10 19 C ; V T kt q 6mV at 300 K; ε 0 8.854 10 1 F/m ; k ox 3.9 ; C ox ( k ox ε 0 ) t ox NMOS: k n µ n C ox ( W L) ; V tn > 0 ; v DS 0 ; v ov v GS V tn (triode) v DS v ov (or v D < v G V tn ) ; i D k n (( v ov )v DS ( v DS ) ) (active) v DS v ov ; i D 0.5k n v ov ( 1 + λv DS ) ; g m k n V ov I D V ov k n I D ; r s 1 g m ; r o L ( λ I D ) PMOS: k p µ p C ox ( W L) ; V tp < 0 ; v SD 0 ; v ov v SG V tp (triode) v SD v ov (or ( v D > v G + V tp )) ; i D k p (( v ov )v SD ( v SD ) ) (active) v DS v ov ; i D 0.5k p v ov ( 1 + λ v SD ) ; g m k p V ov I D V ov k p I D ; r s 1 g m ; r o L ( λ I D ) ( BJT: (active) i C I S e v BE V T) ( 1 + ( vce V A )) ; g m α r e I C V T ; r e V T I E ; r π β g m ; r o V A I C i C βi B ; i E ( β + 1)i B ; α β ( β + 1) ; i C αi E ; R b ( β + 1) ( r e + R E ) ; R e ( R B + r π ) ( β + 1) v R x ( 1 + g m R S )r R o x 1 g m + R D ( g m r o ) o Cascode: v i 1 v i R R sc ( 1 g m + R S ) vi i voc v v D i RD o v i g m ( r o R D ) S v i ( Approx due to g m r o» 1) Diff Pair: A d g m R D ; A CM ( R D ( R SS ))(( R D ) R D ) ; A CM ( R D ( R SS ))(( g m ) g m ) V os V t ; V os ( V ov ) (( R D ) R D ); V os ( V ov ) (( ( W L) ) ( W L) ) 1st order: step response yt () Y ( Y Y 0+ )e t τ A unity gain freq for Ts ( ) -------------------------- M f t A M ω 3dB when A M» 1 1 + s ω 3dB ( 1 + s z Freq: for real axis poles/zeros 1 )( 1 + s z ) ( 1 + s z m ) Ts ( ) k dc ---------------------------------------------------------------------------------------- ( 1 + s ω 1 )( 1 + s ω ) ( 1 + s ω n ) OTC estimate f H 1 ( π τ i ) ; dominant pole estimate f H 1 ( πτ max ) Miller: Z 1 Z ( 1 K) ; Z Z ( 1 1 K) Mos caps: C gs ( 3)WLC ox + WL ov C ox ; C gd WL ov C ox ; C db C db0 ( 1 + V db V 0 ) f t g m ( π( C gs + C gd )) assuming C gd «C gs f t ( 3µV ov ) ( 4πL ) Feedback: A f A ( 1 + Aβ) ; x i ( 1 ( 1 + Aβ) )x s ; da f A f ( 1 ( 1 + Aβ) )da A ; ω Hf ω H ( 1 + Aβ) ; ω Lf ω L ( 1 + Aβ) Loop Gain L s r s t ; A f A ( L ( 1 + L) ) + d ( 1 + L) ; Z port Z 0( ( 1 + L P S ) ( 1 + L O )) PM Ljω ( 1 ) + 180 ; GM Ljω ( 180 ) db Pole Splitting ω p1 1 ( g m R C f R 1 ) ; ω p ( g m C f ) ( C 1 C + C f ( C 1 + C )) Pole Pair: s + ( ω o Q)s + ω o 0 ; Q 0.5 real poles ; Q > 1 freq resp peaking ˆ ˆ Power Amps: Class A: η ( 1 4) ( V o ( IR L ))( V o V CC ) Class B: η ( π 4) V ˆ ( o V CC ); P DN_max V CC ( π R L ) Class AB: i n i p I Q -stage cmos opamp: ω p1 ( 1 ( R 1 G m R C c )); ω p ( G m C ); ω z ( 1 ( C c (( 1 G m ) R) )) SR I C c ω t V ov1 ; ˆ will not SR limit if ω t V o < SR MOS Transistor; CMOS basic parameters. Channel length 0.18µm V t ( V) µc ox ( µa V ) λ ( µm/v) C ox ( ff µm ) t ox ( nm) L ov ( µm) C ---------- db0 W ------- ff µm NMOS 0.4 40 0.05 8.5 4 0.04 0.3 PMOS -0.4 60-0.05 8.5 4 0.0 0.3 page 10 of 10